
Airton Carlos Nunes Raimundo
Luiz Fernando Yamaoka

Agentes Autônomos para Segurança
Residencial

Brasil
2013

Airton Carlos Nunes Raimundo
Luiz Fernando Yamaoka

Agentes Autônomos para Segurança Residencial

Trabalho de formatura

Universidade de São Paulo

Escola Politécnica

Departamento de Engenharia Mecatrônica e de Sistemas Mecânicos

Orientador: Prof. Dr. José Reinaldo Silva
Coorientador: Prof. Marco Antonio Poli Jr

Brasil
2013

Nunes Raimundo, Airton Carlos; Yamaoka, Luiz Fernando
Agentes Autônomos para Segurança Residencial/ Airton Carlos Nunes Rai-

mundo e Luiz Fernando Yamaoka. – Brasil, 2013-
131 p. : il. (algumas color.) ; 30 cm.

Trabalho de Formatura – Universidade de São Paulo
Escola Politécnica
Departamento de Engenharia Mecatrônica e de Sistemas Mecânicos, 2013.
1. Edifícios residenciais (Segurança). 2. Sistemas autônomos. 3. Arquitetura e

organização de computadores. I. Universidade de São Paulo. Escola Politécnica.
Departamento de Engenharia Mecatrônica e de Sistemas Mecânicos

Resumo
A evolução dos sistemas automatizados aponta hoje para uma tendência a utilizar sistemas mais
pervasivos e distribuídos, eventualmente portadores de algum nível de inteligência, conferindo
aos respectivos sistemas uma abordagem cognitiva. Os sistemas domóticos em especial partilham
desta tendência, mas estão ainda muito atrelados, no que tange ao desenvolvimento de sistemas
mecatrônicos, a uma dependência dos sistemas industriais correspondentes. Um dos problemas
acarretado por isso é a falta de flexibilidade, especialmente dos sistemas de vigilância. Neste
caso o ideal seria ter sistemas distribuídos e autônomos que pudessem ser colocados em qual-
quer ponto do ambiente, sem a necessidade de instalação sofisticada causando mudanças - as
vezes drásticas - neste ambiente legado. Naturalmente estes elementos distribuídos poderiam ser
mapeados compondo um sistema integrado regido por um servidor. Neste trabalho desenvolve-
remos um projeto de sistema mecatrônico que na verdade é um sistema composto de agentes
autônomos independentes funcionando cooperativamente e coordenados por um sistema central
que implementaria as funções coordenadas de vigilância (como "seguir"um alvo móvel). A ar-
quitetura distribuída é expansível e pode ser futuramente utilizada, inclusive em um sistema
multi-agente, e será baseada em elementos autônomos que usam o Robot Operating System
(ROS) como base de processamento, faremos ainda as tomadas do ambiente alvo com diferen-
tes níveis de resolução, dependendo do estado do ambiente. Isto permite uma maior agilidade
e a concentração do sistema supervisório somente em dados que realmente interessam para o
processo de vigilância, em um determinado intervalo de tempo. Neste documento mostraremos
a fase inicial do desenvolvimento, seguindo o método de prototipagem rápida e virtual (e não
um processo de eliciação e análise de requisitos convencional), de modo a se adaptar ao atraso
ocorrido no início do projeto. Para o futuro (segundo semestre) ficarão o desenvolvimento de
alguns protótipos do agente independente, seu controle e processamento local e a integração
com o software supervisório do servidor. Uma prova de conceito será desenvolvida baseada na
implementação de um número reduzido de agentes.

Palavras-chaves: Sistema de segurança, agentes independentes, sistema distribuído, multi-
agente

Abstract
Nowadays the evolution of automated systems points to a tendency to use more pervasive and
distributed systems, possibly containing some level of intelligence, giving the respective systems
a cognitive approach. Home automation systems, in particular, share this trend, but are still
very linked to the dependence of the corresponding industrial systems, regarding the develop-
ment of mechatronic systems. One of the problems entailed by this is the lack of flexibility,
especially surveillance systems. In this case the ideal would be to have autonomous distributed
systems, that could be placed anywhere in the room, without the need of sophisticated in-
stallation processes causing change in the environmente, sometimes dramatic. Naturally these
distributed elements could be mapped composing an integrated system governed by a server.
In this paper we develop a project of mechatronic system which is actually a system composed
of autonomous agents working independently, but cooperatively and coordinated by a central
system that would implement the coordinated functions of surveillance (f.i. "follow" a moving
target). The distributed architecture is scalable and can be used in the future, even in a multi-
agent system, and will be based on autonomous elements that use the Robot Operating System
(ROS) as a processing base, the pictures of the environmente can be taken with different levels
of resolution depending on the state of the environment. This benefits the system with a greater
agility and the supervisory system can be concentrated on data that really matter to the vigi-
lance procedure in a given time interval. This document show the initial phase of development,
following the method of rapid prototyping and virtual (and not a process of elicitation and con-
ventional analysis of requirements), in order to adapt to delay in the start of the project. In the
future (second half of the year) some prototypes of the independent agent will be developted, its
control and local processing and integration with supervisory software server. A proof of concept
will be developed based on the implementation of a small number of agents.

Keywords: Security system, independent agents, distributed system, multi-agent

Lista de ilustrações

Figura 1 – Diagrama do sistema multi-agente modificado 21

Figura 2 – Sistema client e service . 25
Figura 3 – Sistema publisher e subscriber . 25
Figura 4 – Captação de imagens em cadência de 2fps 27
Figura 5 – Captação de imagens em cadência de 4fps 28
Figura 6 – Captação de imagens em cadência de 6fps 28
Figura 7 – Exemplo de divisão do ambiente em zonas de segurança 29
Figura 8 – Diagrama de transição de estados do sistema 29
Figura 9 – Relação das variáveis do sistema com o estado de segurança do sistema 30

Figura 10 –Diagrama do funcionamento do sistema 31

Figura 11 –Sistema ROS completo . 35
Figura 12 –Diagrama com a estrutura do sistema no teste 1 36
Figura 13 –Diagrama com a estrutura do sistema no teste 2 36

Figura 14 –Diagrama de casos de uso do sistema ROS 50
Figura 15 –Diagrama de sequência do caso analisar imagem 55
Figura 16 –Diagrama de sequência do caso enviar transmitir imagem 55

Figura 17 –Diagrama de casos de uso do sistema PHP 58
Figura 18 –Diagrama de sequência do caso carregar zonas 63
Figura 19 –Diagrama de sequência do caso fazer download 64
Figura 20 –Diagrama de sequência do caso fazer login 64
Figura 21 –Diagrama de sequência do caso enviar imagem 65
Figura 22 –Diagrama de classes da Framework . 66
Figura 23 –Diagrama de classes da aplicação . 67
Figura 24 –Diagrama entidade relação . 68

Figura 25 –View da página de Login . 70
Figura 26 –View da página do sistema . 71

Figura 27 – Imagem original . 75
Figura 28 –Resultado da comparação de frames subsequentes a partir da imagem

original da figura 27 . 76
Figura 29 –Resultado da comparação da imagem original da figura 27 com o pri-

meiro frame . 77
Figura 30 – Imagem original . 77

Figura 31 –Resultado da comparação da imagem original da figura 30 com o pri-
meiro frame . 78

Figura 32 –Primeiro resultado do algoritmo para encontrar os contornos de imagens 78
Figura 33 –Segundo resultado do algoritmo para encontrar os contornos de imagens 79

Lista de abreviaturas e siglas

AVAC Aquecimento, Ventilação e Ar Condicionado

OpenCV Open Source Computer Vision Library

ROS Robot Operating System

VPN Virtual Private Network

Sumário

1 Introdução . 15

2 Estado da Arte . 17

3 Requisitos de projeto . 19
3.1 Metodologia de projeto . 19

3.1.1 Prototipagem rápida e virtual . 19
3.1.2 Projeto exploratório . 19

3.2 Modelo de referência . 20

4 Design do sistema . 23
4.1 Hardware . 23

4.1.1 Raspberry Pi . 23
4.2 Software . 24

4.2.1 ROS . 24
4.3 Aquisição de imagens . 26

4.3.1 Resolução da imagem . 26
4.3.2 Cadência . 27

4.4 Sistema de segurança . 28
4.4.1 As zonas do sistema . 29
4.4.2 Os estados do sistema . 29
4.4.3 Os atributos do sistema . 30

5 Projeto . 31
5.1 Estrutura do sistema . 31
5.2 Desempenho esperado . 32

6 Resultados . 35
6.1 Implementação do sistema completo . 35

6.1.1 Teste 1 . 35
6.1.2 Teste 2 . 36

6.2 Discussão dos resultados . 37
6.2.1 Raspberry Pi . 37
6.2.2 Funcionamento da arquitetura . 37
6.2.3 Algoritmo de detecção de invasão 37
6.2.4 Arquitetura Mutli-agente . 38
6.2.5 Flexibilidade . 38

6.2.6 Agentes leves . 38
6.2.7 Controle distribuído . 39
6.2.8 Segurança da rede . 39
6.2.9 Velocidade de transmissão de dados 39
6.2.10 PHP . 40

7 Conclusão . 41
7.1 Trabalhos futuros . 42

7.1.1 Estrutura multi-agente . 42
7.1.2 Funcionalidades do sistema . 43

Referências . 45

Apêndices 47

APÊNDICE A Diagramas do sistema ROS . 49
A.1 Casos de uso . 49

A.1.1 Especificação de casos de uso . 49
A.1.1.1 Diagrama de casos de uso 49
A.1.1.2 Identificação dos atores 49
A.1.1.3 Identificação dos casos de uso 49
A.1.1.4 Detalhamento dos casos de uso 51

A.2 Diagrama de sequência . 54

APÊNDICE B Diagramas do sistema PHP 57
B.1 Casos de uso . 57

B.1.1 Especificação de casos de uso . 57
B.1.1.1 Diagrama de casos de uso 57
B.1.1.2 Identificação dos atores 57
B.1.1.3 Identificação dos casos de uso 57
B.1.1.4 Detalhamento dos casos de uso 59

B.2 Diagramas de sequência . 63
B.3 Diagrama de classes . 65
B.4 Diagrama entidade relação . 65

APÊNDICE C Descrição do sistema PHP . 69
C.0.1 Framework . 69
C.0.2 Models . 70
C.0.3 Views . 70
C.0.4 Controllers . 71

C.0.5 Components . 72
C.0.6 Server . 72

APÊNDICE D Algoritmos para detecção de invasão 75
D.1 Comparação de frames subsequentes . 75
D.2 Comparação com o primeiro frame . 76
D.3 Contornos de imagens . 77

APÊNDICE E Documentação projeto ROS 81

APÊNDICE F Documentação projeto PHP 95

APÊNDICE G Código fonte de geração do Banco de Dados 127

15

1 Introdução

Os sistemas de segurança para domótica geralmente apresentam uma arquitetura
fixa, embora distribuída, onde sensores e câmeras são colocados em postos fixos. Isso depõe
contra o próprio requisito de segurança, dado que é possível ter conhecimento prévio da
colocação dos sensores e câmeras, na maior parte dos casos.

Outro problema é que os sistema de domótica atualmente são isolados e não se
intercomunicam. Por exemplo o sistema de segurança observado em (VERISURE, 2013)
não permite a integração com outros sistemas presentes na residência. Essa característica
dos sistemas de segurança domótica atuais restringe que novas funcionalidades possam ser
implementadas e sistemas mais completos possam ser criados. Além disso, nos sistemas de
segurança atuais também não há a possibilidade de expansão em escala como observado
em (VERISURE, 2013) há uma limitação de 32 detectores, em (SMSOLUTION, 2013)
existe uma limitação de 16 câmeras e em (SU; LEE; WU, 2006), onde foi desenvolvido
um sistema de home automation a partir de um microcontrolador, que possui apenas
6 entradas para receber sinais dos sensores e 4 saídas, que controlam os aparelhos. Se
houver necessidade de expansão do sistema, esta é geralmente feita a custa de retrabalho
e adaptações significativas no sistema original – embora já existam algumas propostas de
sistema já modularizados (GOMASA, 2011).

Outra característica é que os diversos sistemas de segurança do mercado podem
utilizar diversos sensores, como sensores de contato, de presença, infravermelho, de movi-
mento, câmeras e também atuadores como luzes, alto-falantes e até robôs (HSU; YANG;
WU, 2009), (SONG et al., 2009), (LUO, 2007). No entanto, um fato em comum deles é que
possuem uma central de monitoramento e/ou central de controle. Com isso, se esta central
possui algum problema o sistema inteiro perde sua funcionalidade e, portanto, o ambiente
se torna inseguro. Por isso, objetiva-se neste projeto desenvolver um sistema de agentes
distribuídos, ou seja, um sistema de agentes que funcionem independentemente. Desta
forma, não haveria uma central de controle e se um agente é, por exemplo, danificado, os
outros agentes continuam operando sem problemas.

Locais públicos possuem ainda requisitos próprios quando se trata de sistemas de
segurança porque, diferente de um ambiente privado, um ladrão tem o total acesso ao
ambiente do furto quantas vezes ele desejar. Isso permite que planos complexos sejam
arquitetados para vencer um sistema de segurança convencional. Partindo dessa particu-
laridade, esse trabalho propõe o desenvolvimento um sistema de segurança flexível contra
intrusão que permita a realocação de seus sensores a qualquer momento. Outro exemplo,
no qual este problema é abordado seria um condomínio de casas, onde o condomínio ofe-

16 Capítulo 1. Introdução

reça um sistema de segurança interno para as casas. No entanto, cada casa possui suas
particularidades. Deste modo, algumas casas poderiam optar pela instalação das câmeras
enquanto outros não por questões de privacidade; a disposição dos móveis e a construção
das casas são diferentes em cada casa, então as câmeras precisam ser dispostas em lo-
cais diferentes; após alguns meses de teste, o usuário pode não gostar do sistema e optar
por retirá-lo de sua residência; entre outros exemplos. Em todos estes casos, um sistema
flexível seria muito útil e facilitaria a vida dos usuários.

Neste trabalho investigaremos a possibilidade de implementação de um sistema
de segurança com uma arquitetura multi-agente flexível, que de fato pode ser usada em
vários sistemas de automação, seja em domótica ou em outros ramos de aplicação. Como
demonstrado em (ABREU et al., 2000) em uma aplicação para monitoramento de tráfego
de veículos em uma rodovia.

O sistema proposto pode ser caracterizado como uma arquitetura de duas camadas
para um sistema multi-agente (não-inteligente, no caso de estudo proposto), colaborativo,
flexível e aberta – onde novos elementos podem entrar a qualquer momento, bastando ter
o seu identificador registrado no banco de dados, juntamente com a sua posição atual.
Isso permite que a qualquer momento a posição dos elementos sensor/camera possam
ser alterados e atualizados novamente no banco de dados sem nenhuma alteração na
funcionalidade ou na programação dos processos do sistema.

Para garantir a generalidade do sistema e sua possível aplicação a outros aplicati-
vos de domótica ou de automação em geral, optou-se por ter dispositivos genéricos, que
seguem a atual tendência de modularização: cada agente será então implementado em
um Raspberry Pi e conectados sem fio a um servidor (onde fica a camada de processa-
mento principal, onde eventualmente se incluiria inteligência); em cada agente tem seu
processamento local baseado em ROS (Robotic Operating System).

Apesar de ter como base uma implementação específica para sistemas domóti-
cos o objetivo principal é na verdade discutir e investigar a arquitetura proposta e sua
aplicabilidade a outros sistemas similares.

17

2 Estado da Arte

Como dito anteriormente já existem no mercado vários sistemas de domótica, que,
no entanto, possuem diversas limitações referentes a intercomunicação com sistemas com
funções diferentes (VERISURE, 2013) e também a impossibilidade de expansão em escala
no número de sensores, câmeras, detectores e outros (SMSOLUTION, 2013).

Para solucionar esses problemas supracitados uma possibilidade seria a implanta-
ção de sistemas multi-agentes como mostrado em (ABREU et al., 2000) no desenvolvi-
mento de um sistema multi-agente para monitorar o tráfego de veículos em uma rodovia.
Este trabalho foi realizado por um consórcio dos laboratórios ADDETTI (Lisboa, Portu-
gal), EPFL (Lausane, Suiça), LEP (Paris, França) e UCL (Louvain, Bélgica) e mostrou a
possibilidade de expansão em escopo, possibilidade de adicionar novas funcionalidades ao
sistema; e também a possibilidade de expansão em escala com a adição de mais agentes
ao sistema. Contudo, apesar deste sistema implementar um sistema com uma arquite-
tura multi-agente como também é objetivado aqui, o projeto em questão possui requisitos
diferentes dos nossos, principalmente requisitos referentes ao sistema de segurança.

No âmbito da segurança residencial, um grande problema existente é a central de
comando, que é o ponto fraco do sistema, pois uma vez desativada a central de comando,
o sistema inteiro perde a sua funcionalidade. Por isso, uma solução para este problema é
a implementação de sistemas multi-agentes com agentes distribuídos como demonstrado
em (SHARPLES; CALLAGHAN; CLARKE, 1999). Neste sistema os agentes possuem
sua própria inteligência e, portanto, tem autonomia para funcionar sozinho, mas também
podem realizar tarefas em conjunto.

Outros trabalhos foram realizados na área do monitoramento de tráfego e também
mostraram sistemas multi-agentes com agentes possuindo inteligência artificial (VAL-
LEJO et al., 2011). Neste trabalho cada agente é um computador normal e, por isso, é
mostrado que cada gente possui uma capacidade de processamento muito alta. No en-
tanto, o sistema perde em flexibilidade, ou seja, na possibilidade de fácil realocação dos
agentes e posicionamento em locais sem fontes de energia, como será deverá ser plausível
para um sistema de segurança.

19

3 Requisitos de projeto

Este projeto não foi realizado através metodologia convencional, onde os requisitos
funcionais e não funcionais devem primeiro ser definidos e posteriormente da análise des-
tes. Ao invés disso, este projeto foi desenvolvido com base na aplicação da metodologia de
prototipagem rápida e virtual (seção 3.1.1); e de um projeto exploratório (seção 3.1.2). Em
termos metodológicos e de projeto isto significa que o projeto já partiu de um modelo de
sistema de vigilância baseado em agentes canônicos (seção 3.2). Esta estratégia permitiu
trabalhar diretamente na prova de conceito do modelo proposto estudando a viabilidade
da arquitetura.

3.1 Metodologia de projeto

3.1.1 Prototipagem rápida e virtual

Prototipagem rápida e virtual é uma metodologia ágil de projeto que possui foco
em atingir rapidamente o produto final para submetê-lo a testes. Essa metodologia é
empregada em projetos exploratórios e que podem ter alguma restrição tecnológica para
serem realizados.

Por esse motivo e diferentemente do projeto de metodologia convencional, não
tem um foco muito grande na definição dos requisitos de projeto. Por isso, é necessária a
definição de um modelo de referência (seção 3.2), que servirá como base para o desenvol-
vimento do projeto. Nele serão definidos detalhes de como o projeto deverá ser apesar de
não haver um estudo de requisitos.

3.1.2 Projeto exploratório

Um projeto exploratório visa a pesquisa e desenvolvimento de um conceito ou
uma ideia que é possível na teoria mas que pode possuir uma barreira tecnológica para
ser realizado. Com a implementação desta ideia, será testada se esta é realmente plausível
de ser aplicada na prática.

Por isso, é possível que a tecnologia que dispomos hoje não seja suficiente para
criarmos um sistema de segurança expansível, multi-agente e flexível, no entanto, novas
aplicações para a tecnologia testada podem surgir desse trabalho.

20 Capítulo 3. Requisitos de projeto

3.2 Modelo de referência
O modelo de referência é uma solução abstrata para uma classe de problemas.

Assim esta solução omite os detalhes de implementação de uma instância particular do
problema para se concentrar nos aspectos gerais.

O modelo de referência aqui definido tem como base as ideologias do Prof. Dr. José
Reinaldo Silva e do Prof. Marco Poli. Ele é definido por uma arquitetura multi-agente
onde a distribuição de tarefas é baseada na arquitetura e em uma definição funcional
do papel destes agentes. Assim, o modelo explorado neste trabalho não é baseado em
agentes inteligentes, e portanto estes agentes não usam a troca de mensagem para definir
o que fazer. Em caráter especial uma situação de emergência foi considerada onde a
coordenação local de atividades pode ser repassada a outro agente, quando o coordenador
estiver impossibilitado ou estiver sendo atacado. Mesmo nesse caso a decisão é unilateral
do agente coordenador.

No caso geral, um sistema multi-agente clássico é um sistema formado com base
em uma arquitetura de agentes autônomos, que possuem certa inteligência (SHARPLES;
CALLAGHAN; CLARKE, 1999), (VALLEJO et al., 2011) para execução de tarefas vi-
sando objetivos específicos. Uma decorrência direta do caráter autônomo é que o não
funcionamento de um agente não impede outros agentes de efetuarem suas atividades.
Logo, os agentes estariam todos em uma mesma camada de nível. Desta maneira, o sis-
tema seria facilmente expansível, pois não existe uma hierarquia entre os agentes (neste
nível).

Além disso, existe o conceito por trás da arquitetura que um agente ativo (KU-
BERA; MATHIEU; PICAULT, 2010) não precisa ser capaz de realizar toda a inteligência
do sistema, mas que um comportamento global inteligente pode ser obtido através da
soma das atividade individual e independente de cada um dos agentes.

No entanto, o modelo de referência utilizado define uma arquitetura multi-agente
modificada para um sistema em duas camadas, onde a camada superior é um supervisor
rodando sobre um sistema de informação e a segunda camada é composta pelos demais
agentes, como pode ser observado na Figura 1. Neste sistema o agente superior, que é o
sistema de informação não sabe da existência dos agentes do sistema multi-agente, mas os
agentes da segunda camada conhecem o endereço do sistema para que possam estabelecer
uma comunicação com o servidor, estabelecendo um comunicação “one way”, o que reduz
ainda mais a necessidade de comunicação.

Outra ideia do modelo de referência é que o sistema seja aberto, e altamente
configurável e modificável, ou seja, os agentes devem ser implementados em um hardware
que permita a fácil realocação dos agentes, e o sistema global deve admitir sempre a
entrada de novos agentes ou a retirada de algum.

3.2. Modelo de referência 21

Figura 1 – Diagrama do sistema multi-agente modificado

23

4 Design do sistema

Para que o sistema desenvolvido atenda ao modelo de referência, algumas espe-
cificações foram realizadas para este projeto nos seguintes pontos: Hardware (seção 4.1),
software (seção 4.2), aquisição de imagens (seção 4.3) e sistema de segurança (seção 4.4)

4.1 Hardware
Com o intuito de montar um agente para a aquisição das imagens das câmeras

e realizar possivelmente um tratamento inicial da imagens, diversos hardwares poderiam
ser utilizados, como por exemplo:

∙ Desktop

∙ Laptop

∙ Arduino

∙ Raspberry Pi

Desktops e Laptops apresentam grande poder de processamento e seriam ótimos
para a construção de agentes independentes, que fariam todo o processamento de imagens
neles mesmo, mas não seriam uma boa opção para este projeto, pois é objetivo deste
projeto construir agentes pequenos e de fácil realocação. Conta ainda contra estas opções
o alto custo do equipamento.

O Arduino seria uma ótima solução para o desenvolvimento de um agente pequeno,
leve e muito flexível, no entanto, seu poder de processamento é muito baixo (o Arduino
Uno, por exemplo, conta com apenas 2Kb de memória RAM estática) e seria muito difícil
realizar um processamento da imagem local.

Uma opção para suprir as necessidades de realizar um agente flexível com poder
de processamento razoável seria o Raspberry Pi. Mais detalhes sobre esse hardware são
dados na seção seguinte.

4.1.1 Raspberry Pi

O Raspberry Pi é um computador de baixo custo desenvolvido pela Raspberry Pi
Foundation no Reino Unido com o intuito de promover o ensino de ciência da computação
em escolas. O O modelo B deste computador possui as dimensões de 85.60mm x 53.98mm,
duas portas USB, adaptador Ethernet para conexão a rede, fonte de energia via MicroUSB,

24 Capítulo 4. Design do sistema

512Mb de memória RAM e outros. Além disso, pode rodar uma versão adaptada da
distribuição para Linux Debian, o Raspbian.

No Brasil, ele pode ser adquirido a um custo de R$150,00 por unidade.

Devido as suas pequenas dimensões pode ser utilizado neste projeto para con-
trolar a câmera, adquirir as imagens e realizar o tratamento inicial destas. Deste modo,
poderíamos desenvolver um sistema pequeno, móvel e flexível, que poderá ser movido e
reinstalado pelo usuário sem perda de funcionalidades e qualidade.

4.2 Software
Para atender aos requisitos poderíamos desenvolver uma linguagem própria de

programação, que possuiria uma adaptabilidade imensa, pois seria desenvolvida por nós
mesmos. No entanto, seu desenvolvimento seria muito trabalhoso. Uma segunda alterna-
tiva seria a utilização de frameworks já existentes, que proporcionariam uma solução mais
robusta, pois são desenvolvidas por especialistas há anos. Duas opções de frameworks já
existentes são Erlang e ROS (Robot Operating System).

Erlang é uma linguagem de programação a principio desenvolvida pela empresa
Ericsson, mas que agora é disponível open source. Esta é uma linguagem muito robusta,
com funções altamente desenvolvidas.

Apesar do Erlang ser uma boa alternativa para este projeto optaremos pelo ROS.
ROS não possui uma gama de funcionalidades como o Erlang, no entanto, possui um fórum
altamente ativo e prontamente disposto a ajudar, fator que ajudará no desenvolvimento
do projeto.

4.2.1 ROS

ROS é uma framework de software para o desenvolvimento de software para robôs,
no entanto, possui as ferramentas necessárias para o desenvolvimento deste projeto, como
transmissão de mensagens, captura de imagens da webcam e outros, além de possuir
ferramentas de robótica, que poderão ser utilizadas futuramente para o desenvolvimento
e aperfeiçoamento do projeto.

Esta framework funciona com uma arquitetura, que possui quatro tipos diferentes
de agentes:

∙ Service

∙ Client

∙ Publisher

4.2. Software 25

∙ Subscriber

Estes agentes funcionam pareados. O agente service trabalha em conjunto com o
agente client, e o publisher com o subscriber.

Como pode ser observado na figura abaixo, os agentes service e client funcionam
como um sistema de pergunta e resposta. O agente client pergunta ao agente service e
obtêm a resposta deste. Deste modo, vários clientes podem interagir com o mesmo serviço
e um único cliente também pode interagir com múltiplos serviços.

Figura 2 – Sistema client e service

Os agentes publisher e subscriber trabalham diferentemente. O agente publisher
envia uma mensagem constantemente: um feed de mensagens, e o subscriber "ouve"este
feed de mensagens. Assim sendo, vários subscribers podem aderir ao mesmo feed de um pu-
blisher e, por exemplo, realizar tarefas diferentes com este feed. Por exemplo, um publisher
envia a imagem da sua câmera em um feed e há um subscriber detectando movimento e
outro subscriber realizando o reconhecimento de faces. Este modo de funcionamento pode
ser observado na figura abaixo.

Figura 3 – Sistema publisher e subscriber

26 Capítulo 4. Design do sistema

Com estes agentes é possível desenvolver o sistema expansível desejado, pois po-
deremos adicionar novos subscribers para realizar tarefas diferentes, aumentando as fun-
cionalidades do projeto, assim como novas câmeras gerando novos feeds de mensagens,
que serão aderidos por outros subscribers aumentando a escala do projeto.

No início do desenvolvimento do ROS, o sistema deveria conter sempre um único
nó master para que o sistema pudesse funcionar. Deste modo, não seria possível desen-
volver um sistema de agentes distribuídos, pois sem a existência do nó master, o sistema
pararia de funcionar. No entanto, foram desenvolvidas recentemente soluções multi-master
para sistemas ROS, portanto, este problema pode ser sanado e um sistema distribuído
construído.

4.3 Aquisição de imagens
Para definir as 2 variáveis na aquisição das imagens: resolução e cadência, foram

realizados alguns testes e comparações. Para estes testes foi utilizada a câmera embutida
do laptop Asus U46E. Esta é uma webcam de resolução máxima de 0,3Mp.

4.3.1 Resolução da imagem

Para realizar a seleção da resolução da imagem adquirida, foi realizado um teste
analisando a mesma imagem em diversas resoluções.

Para este teste utilizamos uma imagem em tamanho 4x3, pois este é o formato da
imagem fornecida por grande parte das webcams atuais. Deste modo analisamos a mesma
imagem de um corredor com uma pessoa em primeiro plano nas seguintes resoluções:
240x320, 360x480 e 480x640.

Observando as imagens obtidas, pudemos observar que a imagem com menor re-
solução não apresentará uma resolução mínima suficiente para processá-la e reconhecer
uma intrusão de uma pessoa. Por exemplo, será reconhecer movimento de pessoas fora do
primeiro plano, por isso acredita-se que uma imagem de resolução 320x240 não apresente
os requisitos necessários para o reconhecimento de intrusões.

Analisando a imagem de resolução 480x360 já apresenta uma resolução suficiente
para reconhecer a intrusão de pessoas em pelo menos primeiro e segundo plano. Natural-
mente um movimento muito distante será muito difícil de reconhecer, mas realizar este
reconhecimento seria necessário aumentar consideravelmente a resolução da imagem e,
consequentemente, sobrecarregar a rede com a transmissão desses dados.

No entanto, para realizar processamentos mais complexos do que o reconhecimento
de intrusão, como o reconhecimento de faces, seria necessário uma resolução maior como,
por exemplo a de 640x480.

4.3. Aquisição de imagens 27

Para evitar o sobrecarregamento desnecessário da rede, uma solução viável seria
o envio de imagens com resolução 480x360 enquanto não houvesse reconhecimento de
intrusões e a partir do momento que um intruso fosse reconhecido, a resolução da imagem
adquirida aumentasse para 640x480 ou superior para que os processamentos complexos
sejam realizados.

4.3.2 Cadência

Para a filmagem e projeção de filmes em cinema a cadência padrão desde a década
de 20 é de 24fps (BROWNLOW, 1980), portanto, esta frequência de quadros oferece
uma qualidade visual muito boa e contínua. Para o desenvolvimento de um sistema de
segurança as imagens seriam captadas idealmente em uma frequência que oferecesse uma
imagem contínua, no entanto, com o intuito de não sobrecarregar a rede com a transmissão
de dados, utilizaremos uma cadência menor, mas que não comprometa a segurança do local
em questão, ou seja, que não perca informações importantes.

Para a escolha da cadência foram realizados três testes: a 2fps, 4fps e 6fps. Neste
teste uma pessoa passou caminhando normalmente a cerca de meio metro de distância da
câmera. Com isso pode ser analisado em quantos frames a pessoa seria captada.

O resultado destes testes pode ser observado nas figuras 4, 5 e 6.

Figura 4 – Captação de imagens em cadência de 2fps

Como observado nos testes, a pessoa pode ser observada em 2 frames na cadência
de 2fps, em 4 frames na cadência de 4fps e em 7 frames na cadência de 6fps.

Dois pontos podem e devem ser citados aqui. Primeiramente as câmeras de segu-
rança geralmente são fixadas em locais altos e, portanto, dificilmente uma pessoa passaria
a uma distância de meio metro da câmera. Por estar mais distante da câmera, em uma
sequência de imagens captada com a mesma cadência, a pessoa apareceria em mais fra-
mes do que nos testes realizados. O segundo ponto a ser levado em consideração é que o
primeiro objetivo a ser atendido é o reconhecimento da presença de uma pessoa no local,
portanto, não é necessário que ela seja captada em diversos frames.

28 Capítulo 4. Design do sistema

Figura 5 – Captação de imagens em cadência de 4fps

Figura 6 – Captação de imagens em cadência de 6fps

Considerando que um invasor poderia passar pelo recinto em alta velocidades e
que o sistema de segurança precisa reconhecer a presença de todos os que passam em seu
campo de visão, acredita-se que a cadência de 6fps é mais adequada para o projeto para
que este também contenha uma certa margem de segurança.

Contudo, assim como ocorre na resolução da imagem, que pode ser aumentada
quando um invasor é reconhecido, a cadência também pode ser elevada para aumentar a
chance de obter um quadro com uma imagem clara.

4.4 Sistema de segurança

Ao falar sobre o sistema de segurança em si, foram realizadas as seguintes especi-
ficações com referência ao ambiente a ser monitorado.

4.4. Sistema de segurança 29

4.4.1 As zonas do sistema

Com a função de tornar precisa a ação preventiva quando esta for acionada é útil
dividir o ambiente monitorado em zonas de segurança, como no esquema da figura 7.

Figura 7 – Exemplo de divisão do ambiente em zonas de segurança

4.4.2 Os estados do sistema

Um sistema de segurança possui como produto de seu funcionamento um estado
que diz se o ambiente está seguro ou se alguma ação deve ser tomada para garantir a
segurança. Por exemplo:

∙ Seguro

∙ Ameaça de invasão

∙ Invasão

O sistema opera normalmente quando em estado seguro, verificando todas as va-
riáveis periodicamente para validar esse estado, caso algo saia do normal o sistema pode
passar para os estados ameaça de invasão ou invasão onde deverá encaminhar uma men-
sagem de alerta. Um diagrama destas transações pode ser observado na figura 8.

Figura 8 – Diagrama de transição de estados do sistema

30 Capítulo 4. Design do sistema

4.4.3 Os atributos do sistema

Um conjunto de variáveis internas e externas será utilizado para se determinar o
estado de segurança do sistema.

Sensores de movimento, câmeras de vigilância e sensores luminosos podem ser
usados para captar informações do ambiente e são exemplos de variáveis externas.

Dia da semana e hora local são variáveis que podem ser monitoradas sem a neces-
sidade de se instalar sensores no ambiente e são exemplos de variáveis internas.

A relação entre estes atributos do sistema com o estado de segurança do sistema
pode ser observado na imagem 9

Figura 9 – Relação das variáveis do sistema com o estado de segurança do sistema

Uma vez que o sistema entre nos estados Ameaça de Invasão ou Invasão ele somente
poderá voltar para o estado Seguro com a ação de um funcionário da segurança que deve
ter feito a devida inspeção da zona ameaçada.

31

5 Projeto

Nesta seção vamos descrever o conjunto de softwares e hardwares adotados para
colocar em teste a proposta de arquitetura para domótica que foi apresentada por esse
trabalho.

A arquitetura multi-agente baseada em ROS que foi escolhida no capitulo referente
aos requisitos de projeto será implementada num hardware Raspberry Pi que deverá su-
portar, além da arquitetura, o processamento da biblioteca OpenCV, o driver da câmera
de vídeo e todos os agentes necessários para realizar a tarefa de supervisionamento.

Em paralelo a esse sistema, teremos um sistema de informações que será respon-
sável por apresentar os dados coletados relativos à segurança, inclusive o vídeo captado
pelas câmeras que estiverem transmitindo.

5.1 Estrutura do sistema
Este projeto implementa um sistema de segurança distribuído que pode monitorar

em paralelo diversos locais fazendo uso de uma arquitetura multi-agente.

O diagrama da figura 10 ilustra o funcionamento do sistema.

Figura 10 – Diagrama do funcionamento do sistema

Agente Sensor O agente sensor é o agente responsável pela captação das imagens atra-
vés da câmera USB e a disponibilização destas imagens em um feed de mensagens
do tipo publisher-subscriber. Deste modo, as imagens captadas pela câmera ficarão
disponíveis para que outros agentes recebam essas mensagens e possam efetuar as
tarefas atribuídas a eles.

32 Capítulo 5. Projeto

Agente Interpretador O agente interpretador possui como funções receber o feed de
mensagens contendo as imagens enviadas pelo agente sensor, interpretar estas ima-
gens, ou seja, verificar se houve ou não uma invasão do ambiente e notificar os
outros agentes sobre a análise das imagens para que as devidas providencias sejam
tomadas.

Agente Monitor O agente monitor é responsável por convergir os sinais de status de
vários agentes interpretadores de uma zona, as imagens enviadas pelos agentes sen-
sores desta mesma zona e também uma comunicação com o servidor para saber o
status desta zona no sistema de informações. Com estas informações este agente
será capaz de determinar o estado da zona atual e salvar as imagens em disco.

Agente Comunicador O agente comunicador é responsável por fazer a transmissão das
imagens salvas em disco pelo agente monitor para o sistema de informações.

Agente Funcionário O agente funcionário é responsável por voltar o sistema ao modo
seguro após uma invasão. Vários funcionários podem ser responsáveis pela segurança
da mesma zona.

Como é possível observar através da figura 10 cada zona possui apenas um agente
monitor e um agente comunicador, no entanto, elas podem possuir inúmeros agentes
sensores e interpretadores. Contudo, estes dois agentes precisam existir sempre aos pares,
pois este conjunto será a representação de uma câmera. O agente sensor captando as
imagens e o agente interpretador analisando estas imagens.

Também é possível observar que apenas os agentes monitor e comunicador tem
conhecimento da existência do sistema de informação e que o funcionário nunca se co-
municará diretamente com os agentes do sistema ROS, este utilizará a interface homem-
máquina para se comunicar com o sistema de informação, que passará as informações
para os agentes monitores.

5.2 Desempenho esperado
O sistema modelado para essa prova de conceito possui quatro funções principais

que deverão ser executadas pelo conjunto. São elas: “Captação de imagens, Processamento
e geração da informação, transmissão e apresentação dos dados”,

Para realizar a tarefa de captação de imagens o Raspberry Pi precisa ter um agente
que suporte o driver uvc_camera (TOSSELL, 2013), que é capaz de captar as imagens de
uma câmera USB. Após a captação das imagens, no entanto, elas não estão prontas para
serem transmitidas para outros agentes, portanto, é necessário converter estas imagens
para um formato transmissível pelo ROS. Isto se dá através do pacote image_transport

5.2. Desempenho esperado 33

(MIHELICH, 2013), que permite a publicação e a subscrição do feed de imagens e oferece
suporte para o transporte de imagens em formatos comprimidos e em conexões de baixa
capacidade de transmissão.

Com as imagens captadas, o próximo passo é o processamento destas para geração
de informações. Para o processamento de imagens é necessária a conversão das imagens
para um formato que permita a manipulação destas. Isto se dá através do formato Mat da
biblioteca OpenCV (Open Source Computer Vision Library) (OPENCV, 2013). OpenCV
é uma biblioteca de funções voltadas para a visão computacional em tempo real. Ela foi
desenvolvida pela Intel em 1999 e possui suporte para diversas linguagens de programação,
inclusive C++. Com esta biblioteca é possível analisar as imagens pixel a pixel e assim
realizar a detecção de intrusões.

Como uma invasão no ambiente monitorado pode ser detectado quando houver
um movimento no ambiente, é necessário um algoritmo para detecção de movimento nas
imagens. Diversos são os algoritmos para tal e neste projeto utilizaremos um algoritmo de
comparação de frames subsequentes. Um maior detalhamento deste algoritmo é detalhado
no apêndice D.1.

Outros dois algoritmos para detecção de invasões foram desenvolvidos e testados,
no entanto, optou-se pela utilização do algoritmo de comparação de frames subsequentes.
Mais detalhes sobre os outros algoritmos podem ser encontrados no apêndice D.

Com a informação de invasão de várias câmeras de uma mesma zona é possível
determinar o estado desta zona, ou seja, se a zona se encontra em estado de segurança,
alerta ou invasão. Este estado da zona é transmitido para o servidor através de uma
chamada HTTP e casa a zona se encontre em estado de alerta ou invasão a imagem das
câmeras da zona também são enviadas para o servidor através de uma chamada HTTP e
codificando a imagem em base64 para transmitir informações binárias em forma de texto.

Como interface com o usuário nós escolhemos adotar a linguagem PHP por sua
facilidade de acesso a dados, por ser multi-plataforma: funcionando tanto em Linux, Win-
dows e Solaris, e também por possuir código-fonte aberto.

Esse sistema será desenvolvido utilizando um framework que utiliza o padrão MVC
com o objetivo de proporcionar agilidade no desenvolvimento e estará armazenado num
web server que pode ser hospedado na nuvem, essa é mais uma vantagem de sua utilização
pois os dados não são armazenados nas dependências do local monitorado.

A comunicação com a arquitetura multi-agente será feita via chamada http-post
tanto para transferência do estado do sistema quanto para a transferência das imagens,
isso implica numa solução de compromisso entre resolução da imagem e velocidade de
transferência de frames.

O sistema utilizará o projeto ffmpeg para trabalhar com os vídeos. Para acelerar

34 Capítulo 5. Projeto

a interpretação dos dados pelo usuário a apresentação dos dados deve ser clara, direta e
se aproximar ao máximo do tempo real para garantir a maior segurança.

35

6 Resultados

Para a realização da prova de conceito foram realizadas implementações do sis-
tema completo em funcionamento com diferentes formações dos agentes como pode ser
observado na seção 6.1. Posteriormente, na seção 6.2, são discutidos os resultados obtidos
desta prova de conceito e a implementação das propriedades definidas pelo modelo de
referência.

6.1 Implementação do sistema completo
Para testar o funcionamento do sistema completo foram utilizados duas unidades

do Raspberry Pi com uma câmera USB conectada a cada um destes. Uma imagem do
sistema pode ser observado na figura 11.

Figura 11 – Sistema ROS completo

Além disso foram realizados dois testes com duas formações diferentes dos agentes
como será descrito nas próximas seções.

Ambas as configurações dos agentes funcionaram sem problemas e puderam cum-
prir com seu propósito: detectar uma invasão na zona, informar o usuário final e gravar
as imagens das câmeras no banco de dados.

6.1.1 Teste 1

No primeiro teste realizado foram colocados os dois Raspberry Pis para funcionar,
sendo que cada um destes Hardwares representava uma zona. Desta maneira, cada um

36 Capítulo 6. Resultados

dos Raspberry Pis possui todos os agentes: sensor, interpretador, monitor e comunicador.
Além disso, um deles ainda deve possuir um Master rodando nele.

Uma ilustração do sistema pode ser observado na figura 12.

Figura 12 – Diagrama com a estrutura do sistema no teste 1

6.1.2 Teste 2

No segundo teste realizado foram colocados os dois Raspberry Pis em uma mesma
zona, ou seja, apenas um destes Hardwares deveria conter um agente monitor e uma
agente comunicador. Como pode ser observado na figura 13 o Hardware 1 possui o ROS
Master nele enquanto o Hardware 2 possui os agentes monitor e comunicador. Desta
maneira, o Hardware 1 se comunica apenas com o Hardware 2, enquanto o Hardware 1
será responsável por toda a comunicação com o sistema de informações.

Figura 13 – Diagrama com a estrutura do sistema no teste 2

6.2. Discussão dos resultados 37

6.2 Discussão dos resultados

A implementação do sistema completo foi realizada com sucesso em ambos os testes
feitos, com as diferentes formações dos agentes. Com isso foi possível observar as propri-
edades idealizadas pelo modelo de referência da seção 3.2, o sucesso da implementação
destas propriedades e outros pontos julgados necessários de serem abordados.

6.2.1 Raspberry Pi

Durante a realização dos testes o Raspberry Pi se mostrou completamente capaz
de suportar 5 agentes funcionando simultaneamente em seu sistema. Isso acarretou numa
diminuição de rendimento dos agentes individuais, mas não afetou o funcionamento global
do sistema.

A principio o sistema suportaria a adição de novos agentes neste mesmo Raspberry
Pi, mas a real exequibilidade desta implementação precisa ser colocada a prova para
confirmarmos sua plausibilidade.

6.2.2 Funcionamento da arquitetura

No modelo convencional de arquitetura multi-agente os agentes se comunicam entre
si para determinar o que fazer, mas na arquitetura utilizada os agentes já possuem tarefas
pré-definidas e possuem pouca ou nenhuma inteligência na execução de suas tarefas.

Funcionalmente esta pré-definição da ação dos agentes possibilitou os agentes a
focarem 100% do tempo na execução das tarefas e não na comunicação com outros agentes
para a definição do que fazer, por isso não encontraram o problema destacado em (SMITH,
1980), onde os agentes passam mais tempo combinando o que fazer do que efetivamente
realizando a tarefa.

6.2.3 Algoritmo de detecção de invasão

O algoritmo utilizado para detecção de invasão, comparação de frames subsequen-
tes, mostrou-se capaz e suficiente para realizar a tarefa designada. Obviamente o algoritmo
possui suas limitações e pontos fracos, como a incapacidade de detecção de invasão em
um plano muito distante; pessoas caminhando muito devagar à frente da câmera, pois a
diferença entre os frames se torna muito pequena; entre outros. No entanto, o algoritmo
se conseguiu detectar uma invasão em todas as ocasiões de pessoas andando normalmente
em primeiro plano.

38 Capítulo 6. Resultados

6.2.4 Arquitetura Mutli-agente

A implementação de um sistema com a arquitetura multi-agente possiblitou ao
sistema uma fácil expansão em escala. Nos dois testes realizados foi possível observar a
facilidade de adição de um novo agente sensor e interpretador no teste 2 e um agente
sensor, interpretador, monitor e comunicador no teste 1. Este mesmo procedimento po-
deria ser aplicado mais vezes para expansão de número de câmeras por zonas e também
de zonas no espaço.

No âmbito da expansão em escopo foi possível observar a facilidade de adição de
uma nova funcionalidade ao sistema durante a execução do projeto. Por exemplo, o projeto
inicial não previa a existência de um agente comunicador no sistema, no entanto, devido
a problemas de velocidade de comunicação este agente foi implementado e a facilidade
para adição de um novo tipo de agente ao sistema foi enorme devido a não necessidade
de modificação nos agentes pré-existentes.

6.2.5 Flexibilidade

Após implementação dos dois testes na seção 6.1 foi possível verificar através da
mudança de um teste para o seguinte que a flexibilidade do sistema é enorme, pois apenas
é necessário modificar a atribuição de zona dos agentes sensor e interpretador do Hardware
1 para que o sistema já tivesse uma estrutura completamente diferente em funcionamento.
Desta maneira se pode demonstrar que o sistema possui uma grande flexibilidade, pois ao
modificar o posicionamento (zona) de uma câmera, é apenas necessário mudar a atribuição
de zona deste agente.

Em outro caso, quando a criação de uma nova zona é necessário, também é ne-
cessária a criação de um agente monitor e um agente comunicador para esta zona. No
entanto, apesar da necessidade de criar mais agentes, a dificuldade para realização de tal
tarefa continua mínima.

6.2.6 Agentes leves

Os agentes desenvolvidos neste projeto realizam tarefas mínimas, mas somando
as ações de todos eles é possível realizar uma tarefa mais complexa, detecção de invasão
de uma zona. Estes agentes foram desenvolvidos desta maneira para torná-los leves e
possibilitar a separação deles em agentes diferentes caso o hardware não suportasse o
processamento requisitado por eles. No entanto, como pode ser observado no primeiro
teste realizado, os agentes desenvolvidos são bastante leves e possibilitaram a execução
de todos eles simultaneamente em um mesmo nó, Hardware 1.

Obviamente o processamento do Raspberry Pi não é infinito e, portanto, os próxi-
mos agentes desenvolvidos devem seguir a mesma linha de agentes leves e simples para que,

6.2. Discussão dos resultados 39

a partir do momento que o hardware não possua capacidade de processamento suficiente,
os agentes possam ser separados em agentes diferentes.

6.2.7 Controle distribuído

O controle distribuído idealizado pelo modelo de referência visava a não necessi-
dade de uma central de controle de todas as zonas e convergência de sinais. Este objetivo
foi em parte atingido, pois já existe um controle distribuído por parte dos agentes moni-
tores que possuem controle, cada um, sobre uma zona. No entanto, ainda existe um ponto
de confluência de todos as informações das zonas que é o servidor e este obstáculo não
pôde ser contornado, tornando-se este um ponto fraco do sistema.

Além disso, o sistema como um todo ainda necessita de um agente master em
funcionamento para o sistema funcionar, sendo este também um ponto falho. No entanto,
este não é um ponto tão crítico, pois o agente master pode estar localizado em qualquer
um dos hardwares e para este problema já existem algumas soluções de multi-master que
poderiam ser aplicadas a este sistema, mas que não foram escopo deste.

6.2.8 Segurança da rede

Como o sistema na plataforma ROS não oferece segurança, é necessário implemen-
tar uma camada de rede para assegurar a não invasão de terceiros à rede onde dados e
comunicações sigilosas são transmitidos e armazenados. Isso pode ser obtido através da
implementação de uma VPN. Com isso os agentes e o servidor conseguem se comunicar
de maneira segura e mesmo que um possível invasor conheça, por exemplo, o endereço
do servidor utilizado, ele não conseguirá acessá-lo a menos que esteja dentro da mesma
VPN.

6.2.9 Velocidade de transmissão de dados

A velocidade de transmissão das imagens do agente comunicador para o servidos
ainda é um ponto a ser melhorado. O sistema é capaz de enviar as imagens ao servidor,
contudo ele não consegue realizar esta tarefa em tempo real e, portanto, existe um acúmulo
de imagens a serem enviadas para o servidor mesmo após a atualização do estado de uma
zona para seguro novamente. Desta maneira, as imagens serão disponíveis para o usuário
final com um atraso que pode ser bastante significativo dependendo de quanto tempo de
vídeo foi armazenado, porque o atraso é acumulativo e o agente apenas consegue recuperar
este atraso quando a zona está em estado de segurança e não é necessário o envio de novas
imagens para o servidos.

40 Capítulo 6. Resultados

6.2.10 PHP

O sistema de informação mostrou-se eficaz nessa prova de conceito, atendendo as
exigências de aparência e clareza. O projeto ffmpeg também se mostrou muito eficaz por
ser capaz de criar os vídeos em tempo real.

Como previsto, a comunicação via http encontrou dificuldades de congestão e de-
mora no ensaio dos frames mas que foi resolvido com a introdução do agente comunicador.

41

7 Conclusão

Como dito anteriormente o propósito deste trabalho é mostrar a implementabili-
dade de uma estrutura com arquitetura multi-agente e a partir do desenvolvimento de um
sistema de segurança implementado segundo um modelo de referência cuja arquitetura se
baseia em uma arquitetura multi-agente.

O primeiro claro ponto positivo da implementação de um sistema multi-agente
é a fácil expansão do sistema tanto em escala. No sistema abordado uma expansão em
escala seria a adição de novas câmeras ao sistema. Esta tarefa seria facilmente atingida
colocando em operação mais agentes sensores, interpretadores e quando necessário agentes
monitores e comunicadores (caso as novas câmeras estejam localizadas em novas zonas).
Dada a arquitetura do sistema, uma ação de adição de novos agentes não teria influência
sobre os outros agentes e, portanto, esta expansão é ilimitada diferentemente dos atuais
sistemas de segurança que possuem limitações de número de câmeras, número de sensores,
etc (VERISURE, 2013), (SMSOLUTION, 2013), (SU; LEE; WU, 2006).

Outro ponto a ser destacado é a facilidade da expansão em escopo do sistema.
Devido a forma de comunicação entre os agentes, publisher e subscriber, este sistema
pode ser, com facilidade, acrescido em novas funcionalidades. Por exemplo, o agente sensor
já disponibiliza as imagens obtidas da câmera em um feed de mensagens, assim como o
agente interpretador envia o status de invasão desta câmera em outro feed. Desta maneira
é possível uma implementação de um agente que receba as imagens dos agente sensor e o
status do agnete interpretador e caso exista uma invasão faça o reconhecimento de face no
invasor. Esta seria uma funcionalidade que poderia ser acrescida ao sistema, mas como as
imagens são publicadas em feeds de mensagens, ilimitados subscribers podem receber as
mensagens e realizar diferentes tarefas, portanto, a expansão de funcionalidades do sistema
se dá de uma maneira relativamente simples, pois não há a necessidade de modificação
de agentes pré-existentes.

Com o desenvolvimento deste sistema de segurança se pode notar mais uma das
vantagens da implementação de uma arquitetura multi-agente como a proposta: os agen-
tes conseguem funcionar independentemente do funcionamentos dos outros agentes. Ob-
viamente alguns agentes necessitam de informações fornecidas por outros agentes para
executarem suas tarefas, mas um agente continua em modo de operação mesmo quando
outro agente para de funcionar. Com isso, é possível que exista um agente monitor que
seja capaz de recolocar um agente parado em funcionamento ou mesmo colocar um agente
parado em modo de operação em outro hardware para que este volte a fornecer informa-
ções para um terceiro agente. Esta seria uma funcionalidade muito útil para o sistema,

42 Capítulo 7. Conclusão

pois o próprio sistema seria capaz de detectar mal funcionamentos e corrigí-los, tornando
assim o sistema mais inteligente e independente, além de mais seguro. Contudo, esta fun-
cionalidade não seria aplicável apenas ao sistema de segurança proposto. Esta seria uma
característica da arquitetura dos agentes, que poderia ser utilizada para a implementação
de diversos outros sistemas de automação e não somente à sistemas de segurança.

Obviamente a implementação deste sistema com esta arquitetura também possui
os seus pontos negativos. O primeiro ponto a ser abordado é que a implementação dos
agentes no Raspberry Pi tem as suas vantagens do ponto de vista de flexibilidade do
sistema, ou seja, os hardwares conseguem ser facilmente trocados de posição, contudo
este fato também impôs uma limitação na capacidade de processamento dos agentes, pois
o processador deste hardware também é limitado e, portanto, é necessário construir os
agentes de forma que estes efetuem tarefas simples e que conjuntamente consigam efetuar
tarefas complexas. Desta maneira, é possível dividir agentes que necessitem de mais poder
de processamento em hardwares diferentes.

Outro ponto a ser abordado é a segurança da rede, pois não existe segurança na
camada dos agentes no sistema ROS, portanto, qualquer um poderia ler as mensagens
publicadas em feeds pelos agentes bem como modificar os estados das zonas facilmente,
por isso, é imprescindível que o sistema inteiro funciona embaixo de uma VPN para que
esta realize o papel da camada de segurança do sistema.

O terceiro ponto falho deste sistema é a centralização de atividades. Para que o
sistema desenvolvido funcione é necessário o funcionamento de um agente master, que
comanda toda a comunicação entre os agentes e sem o funcionamento deste o sistema
inteiro para de funcionar. Portanto, este é um ponto falho do sistema, mas já existem
algumas soluções multi-master para sanar este problema. Além disso, existe a convergência
de sinais de todas as zonas para um único ponto que é o servidor, logo, este também é
um ponto falho do sistema que pode se tornar um alvo para possíveis invasores.

7.1 Trabalhos futuros
Com o desenvolvimento deste trabalho, muitos caminhos podem ser seguidos em

trabalhos a serem desenvolvidos no futuro. Estas possibilidades foram divididas em duas
categorias: melhorias na estrutura multi-agente (seção 7.1.1) e melhorias e implementação
de novas funcionalidades no sistema (seção 7.1.2).

7.1.1 Estrutura multi-agente

Algumas melhorias no estrutura multi-agente do sistema poderiam ser desenvolvi-
das para melhorar a qualidade da estrutura. Um exemplo de uma melhoria nesta categoria
seria a implementação de um sistema com múltiplos masters. Na atual configuração o sis-

7.1. Trabalhos futuros 43

tema conta com um único master e este é obrigatório para que o sistema funcione. Deste
modo, se, em algum momento, o hardware contendo o master é desconectado ou desligado,
o sistema inteiro perderá sua funcionalidade. Por isso, este é um ponto falho no sistema.

Outra melhoria seria a capacidade do próprio ser capaz de verificar se um agente
possui um mal funcionamento ou sofreu um ataque e o próprio sistema conseguir de fazer
o agente voltar a funcionar. Além disso, o sistema poderia detectar que um hardware não
funciona e fazer os agentes deste hardware funcionarem em um hardware diferente para
que o sistema não perca suas funcionalidades.

7.1.2 Funcionalidades do sistema

No âmbito de funcionalidades do sistema diversas novas funcionalidades poderiam
ser desenvolvidas para o sistema. Como o sistema foi desenvolvido de forma a ser al-
tamente expansível em escopo, novos agentes podem facilmente ser implementados para
desenvolverem funções diferentes no sistema. Algumas ideias de agentes seriam um agente
para travamento de portas e janelas, sensor de temperatura e fumaça para detecção de
possíveis incêndios, entre outros.

45

Referências

ABREU, B. et al. Video-based multi-agent traffic surveillance system. In: Intelligent
Vehicles Symposium, 2000. IV 2000. Proceedings of the IEEE. [S.l.: s.n.], 2000. p.
457–462.

ADMIN, S. Site Templates - Slate Admin | ThemeForest. 2013. http://themeforest.
net/item/slate-admin/133854.

BROWNLOW, K. Silent Films: What Was the Right Speed? Sight and Sound, p.
164–167, 1980.

GOMASA, S. P. Modular Design and Implementation of a Low Cost Home Automation
System using Web-Services. Dissertação (Mestrado) — Massey University, Abany, New
Zealand, 2011.

HSU, C.-L.; YANG, S.-Y.; WU, W.-B. Constructing intelligent home-security system
design with combining phone-net and bluetooth mechanism. In: Machine Learning and
Cybernetics, 2009 International Conference on. [S.l.: s.n.], 2009. v. 6, p. 3316–3323.

KUBERA, Y.; MATHIEU, P.; PICAULT, S. Everything can be agent! In: AAMAS. [S.l.:
s.n.], 2010. p. 1547–1548.

Hongyue Luo. Intelligent Home Security System. 2007. US 2007/0182543 A1. Disponível
em: <http://www.patentlens.net/patentlens/patent/US 2007 0182543 A1/en/>.

MIHELICH, P. image_transport - ROS Wiki. 2013. http://www.ros.org/wiki/image_
transport.

NYFFENEGGER, R. CMSSW_3_9_7 Reference Manual. 2013. https://cmssdt.
cern.ch/SDT/doxygen/CMSSW_3_9_7/doc/html/db/dab/PixelBase64_8cc.html.

OPENCV. OpenCV | OpenCV. 2013. http://www.opencv.org/.

SHARPLES, S.; CALLAGHAN, V.; CLARKE, G. A Multi-Agent Architecture for
Intelligent Building Sensing and Control. International Sensor Review Journal, v. 19, p.
135–140, fev. 1999.

SMITH, R. G. The contract net protocol: High-level communication and control in a
distributed problem solver. IEEE Trans. Comput., IEEE Computer Society, Washington,
DC, USA, v. 29, n. 12, p. 1104–1113, dez. 1980. ISSN 0018-9340. Disponível em:
<http://dx.doi.org/10.1109/TC.1980.1675516>.

SMSOLUTION. SMSolution - Sistemas de segurança - Alarmes - - Alarmes - Câmeras -
Portões Automáticos - Interfones. 2013. http://smsolution.com.br/2013/alarmes/.

SONG, G. et al. A surveillance robot with hopping capabilities for home security.
Consumer Electronics, IEEE Transactions on, v. 55, n. 4, p. 2034–2039, 2009. ISSN
0098-3063.

http://themeforest.net/item/slate-admin/133854
http://themeforest.net/item/slate-admin/133854
http://www.patentlens.net/patentlens/patent/US_2007_0182543_A1/en/
http://www.ros.org/wiki/image_transport
http://www.ros.org/wiki/image_transport
https://cmssdt.cern.ch/SDT/doxygen/CMSSW_3_9_7/doc/html/db/dab/PixelBase64_8cc.html
https://cmssdt.cern.ch/SDT/doxygen/CMSSW_3_9_7/doc/html/db/dab/PixelBase64_8cc.html
http://www.opencv.org/
http://dx.doi.org/10.1109/TC.1980.1675516
http://smsolution.com.br/2013/alarmes/

46 Referências

SU, J.-H.; LEE, C.-S.; WU, W.-C. The design and implementation of a low-cost and
programmable home automation module. Consumer Electronics, IEEE Transactions on,
v. 52, n. 4, p. 1239–1244, 2006. ISSN 0098-3063.

TOSSELL, K. uvc_camera - ROS Wiki. 2013. http://www.ros.org/wiki/uvc_camera.

VALLEJO, D. et al. A multi-agent architecture for supporting distributed normality-
based intelligent surveillance. Eng. Appl. of AI, v. 24, n. 2, p. 325–340, 2011.

VERISURE. Alarmes para residências | Verisure Brasil. 2013. http://www.verisure.
com.br/alarme-residencias.

http://www.ros.org/wiki/uvc_camera
http://www.verisure.com.br/alarme-residencias
http://www.verisure.com.br/alarme-residencias

Apêndices

49

APÊNDICE A – Diagramas do sistema ROS

A.1 Casos de uso

A.1.1 Especificação de casos de uso

Nesta seção serão tratados os casos de uso do sistema ROS. Para tal pode ser
observado na subseção A.1.1.1 o diagrama de casos de uso do sistema. Em seguida podem
serão identificados os atores do sistema na subseção A.1.1.2 e os casos de uso na subseção
A.1.1.3. E por fim o detalhamento de cada um dos casos de uso na subseção A.1.1.4.

A.1.1.1 Diagrama de casos de uso

A figura 14 mostra o diagrama de casos de uso desenhado para o sistema ROS.

A.1.1.2 Identificação dos atores

Como especificado na seção 4, o sistema ROS conta com quatro atores: sensor,
interpretador, monitor e comunicador.

Ator-01 Sensor Agente responsável pela captação das imagens

Ator-02 Interpretador Agente responsável pela interpretação das imagens

Ator-03 Monitor Agente monitorador da zona

Ator-04 Comunicador Agente responsável pela comunicação com o sistema de infor-
mações PHP

A.1.1.3 Identificação dos casos de uso

O diagrama de casos de uso do projeto do sistema ROS pode ser observado na
figura 14.

Como pode ser observado neste diagrama, o agente sensor será responsável captar
a imagem da câmera e publicar esta imagem em um feed de mensagens. A partir deste
feed com as imagens da câmera os agentes interpretador e monitor irão subscrever à essa
publicação.

50 APÊNDICE A. Diagramas do sistema ROS

Figura 14 – Diagrama de casos de uso do sistema ROS

O agente interpretador deverá analisar esta imagem e detectar possíveis invasões.
De acordo com essa análise deverá publicar um feed de mensagens com uma mensagem
de status.

O agente monitor estará subscrevendo ao feed de mensagens com as imagens da
câmera e com o status da zona. Como haverá mais de um agente em uma mesma zona

A.1. Casos de uso 51

e apenas um agente monitor por zona, este deve concentrar as mensagens de status da
zona e também receber atualizações do PHP sobre o status da zona e atualizar o status
da zona real. Com a definição do status real da zona, as imagens dos agentes sensores da
zona deverão ou não ser salvas no em arquivo.

O agente comunicador ficará todo o tempo observado se existe uma imagem salva
em arquivo no disco. Em caso positivo, este agente transmitirá essa imagem para o sistema
de informações.

Estes casos de uso são listados abaixo.

UC-01 Captar imagem Capturar a imagem de uma câmera USB conectada ao hard-
ware

UC-02 Publicar imagem Publicar imagem em um feed de mensagens

UC-03 Subscrever imagem Subscrever ao feed de mensagens da imagem

UC-04 Analisar imagem Analisar a imagem recebida e definir se há ou não uma inva-
são na imagem

UC-05 Publicar status Publicar status da câmera em um feed de mensagens

UC-06 Subscrever status Subscrever ao feed de mensagens do status

UC-07 Receber status PHP Receber o status da zona proveniente do sistema de in-
formações PHP

UC-08 Atualizar status Atualizar status da zona no ROS e PHP, se necessário

UC-09 Salvar imagem Salvar imagem no disco

UC-10 Abrir imagem Abrir imagem salva no disco

UC-11 Transmitir imagem Transmitir imagem para o sistema de informações PHP

A.1.1.4 Detalhamento dos casos de uso

UC-01 Captar imagem Este caso de uso especifica a ação de capturar a imagem de
uma câmera conectada a entrada USB do Raspberry Pi.

Atores Sensor

Pré-condições Câmera deve estar conectada a entrada USB do Raspberry Pi

Pós-condições As imagens estarão dentro do agente sensor para que as tarefas designa-
das a este agente possam ser executadas

52 APÊNDICE A. Diagramas do sistema ROS

UC-02 Publicar imagem Este caso de uso especifica a ação de modificar o formato da
imagem capturada do formato de imagem do ROS para image_transport e publicar esta
imagem em uma feed de mensagens para que outros atores possam utilizar estas imagens
captadas em suas respectivas tarefas.

Atores Sensor

Pré-condições Imagem capturada

Pós-condições Feed de mensagens com a imagem da câmera

UC-03 Subscrever imagem Este caso de uso especifica a ação de subscrever ao feed
de mensagens contendo a imagem da câmera do agente sensor.

Atores Interpretador e Monitor

Pré-condições Feed de mensagens contendo a imagem publicado pelo agente sensor

Pós-condições Imagem disponível para agentes interpretador e monitor para que as
tarefas designadas a estes agentes possam ser executadas

UC-04 Analisar imagem Este caso de uso especifica a ação de modificar o formato
das imagens recebidos de image_transport para o formato de imagens do OpenCV, Mat,
para que as imagens possam ser tratadas e analisadas. Também é aplicado as imagens um
algoritmo de comparação de imagens subsequentes para detecção de intrusões e geração
de uma variável booleana de status para designar a detecção ou não de um invasor neste
sensor.

Atores Interpretador

Pré-condições Imagem disponível no agente interpretador

Pós-condições Status do invasão no agente sensor correspondente

UC-05 Publicar status Este caso de uso especifica a ação de publicar o status de
invasão nas imagens da câmera em um feed de mensagens.

Atores Interpretador

Pré-condições Imagem analisada e variável de status setada

Pós-condições Feed de mensagens com status de invasão nas imagens da câmera

A.1. Casos de uso 53

UC-06 Subscrever status Este caso de uso especifica a ação de subscrever ao feed
de mensagens contendo o status de invasão nas imagens de todas as câmeras de uma
determinada zona.

Atores Monitor

Pré-condições Feed de mensagens contendo os status de invasão das câmeras da zona

Pós-condições Status de invasão das câmeras de uma zona

UC-07 Receber status PHP Este caso de uso especifica a ação de receber o status
de invasão de uma determinada zona no sistema de informações PHP.

Atores Monitor

Pré-condições Sistema de informações PHP rodando e zona cadastrada no sistema

Pós-condições Status de invasão da zona no sistema PHP

UC-08 Atualizar status Este caso de uso especifica a ação de analisar os status de
invasão de todas a câmeras de uma determinada zona e também o status da zona no
sistema de informações e determinar o atual status desta zona. Também é preciso atualizar
este status de invasão da zona no sistema de informações através de uma chamada HTTP.

Atores Monitor

Pré-condições Status de invasão das câmeras da zona e da zona no sistema de informa-
ções

Pós-condições Status de invasão atual da zona

UC-09 Salvar imagem Este caso de uso especifica a ação de salvar a imagem captada
pelas câmeras da zona em disco no caso de uma invasão ter sido detectada na zona.

Atores Monitor

Pré-condições Invasão detectada na zona

Pós-condições Imagem salva no disco

54 APÊNDICE A. Diagramas do sistema ROS

UC-10 Abrir imagem Este caso de uso especifica a ação de abrir a imagem salva em
disco

Atores Comunicador

Pré-condições Existir uma imagem salva em disco

Pós-condições Imagem disponível no agente comunicador para que as tarefas designadas
a este agente possam ser executadas

UC-11 Transmitir imagem Este caso de uso especifica a ação de transmitir a imagens
para o sistema de informações PHP através de uma chamada HTTP.

Atores Comunicador

Pré-condições Imagem disponível no agente comunicador

Pós-condições Imagem enviada para o sistema de informações PHP

A.2 Diagrama de sequência
Para os casos de uso UC-04 Analisar Imagem e UC-11 Transmitir Imagem no

diagrama de casos de uso 14 foram desenvolvidos os diagramas de sequência, figuras 15 e
16 respectivamente. Apenas estes casos de uso foram desenvolvidos devido a complexidade
destes casos de uso e da importância deste no sistema.

No diagrama do caso analisar imagem 15 é possível observar que a imagem que é
inicialmente no formato de image_transport será transformada para o formato Mat do
OpenCV, a seguir a imagem deverá ser transformada em uma imagem binária e comparada
com o frame anterior para a detecção de diferenças nos frames. Então é possível contar o
número de pixels diferentes nestas duas imagens e setar o status de invasão para invasão
caso existe diferença em mais de 2% dos pixels das imagens. Enfim salva-se a imagem
para que o mesmo fluxo possa ser realizado com o próximo frame.

No diagrama do caso transmitir imagem 16 a imagem precisa ser codificada utili-
zando o padrão base64 para que possa ser enviada através de uma chamada HTTP, além
disso é preciso aplicar o código percentagem para eliminar caracteres especiais. Feito isso,
a chamada HTTP pode ser realizada e a imagem deve ser apagada do disco para que não
seja enviada novamente ao servidor.

A.2. Diagrama de sequência 55

Figura 15 – Diagrama de sequência do caso analisar imagem

Figura 16 – Diagrama de sequência do caso enviar transmitir imagem

57

APÊNDICE B – Diagramas do sistema PHP

B.1 Casos de uso

B.1.1 Especificação de casos de uso

B.1.1.1 Diagrama de casos de uso

B.1.1.2 Identificação dos atores

Ator-01 Funcionário Pessoa responsável pela segurança do local, ele deve estar auten-
ticado por login e senha.

Ator-02 ServerPHP Ator que realiza as ações internas do sistema.

B.1.1.3 Identificação dos casos de uso

UC-01 Fazer Login Permitir que um usuário possa ter acesso ao sistema para visualizar
o estado do sistema, alterar o estado do sistema e baixar arquivos de vídeo da lista
de logs do sistema.

UC-02 Fazer Logout Encerra a autenticação existente, assim impede o acesso ao sis-
tema.

UC-03 Renomear Zona Altera o rótulo da zona.

UC-04 Visualizar Zona Exibe o rótulo da zona, o seu estado e a lista de eventos asso-
ciada a essa zona.

UC-05 Listar Log de Eventos Exibe a lista de eventos conjunta de todas as zonas
cadastradas no sistema.

UC-06 Fazer Download Força o download de um arquivo de vídeo.

UC-07 Visualizar Sistema Exibe os estados de todas as zonas cadastradas no sistema.

UC-08 Atualizar Status da Zona PHP Altera o estado da zona no sistema de infor-
mação.

UC-09 Enviar Imagem Permite que uma imagem seja enviada para o sistema de in-
formação.

58 APÊNDICE B. Diagramas do sistema PHP

Figura 17 – Diagrama de casos de uso do sistema PHP

UC-10 Verificar dados de Login Faz a autenticação do funcionário por meio de usuá-
rio e senha.

UC-11 Registrar Evento Salva as informações de uma mudança de estado do sistema.

UC-12 Carregar Zonas Permite o cadastro de uma nova zona a ser monitorada ou
altera o estado de uma zona existente.

B.1. Casos de uso 59

B.1.1.4 Detalhamento dos casos de uso

UC-01 Fazer Login Este caso de uso especifica a ação de autenticação que um usuário
executa no sistema, com o objetivo de conectar-se a ele. Apenas usuários cadastrados
podem se conectar ao sistema. Devem ser passadas as informações de usuário e senha
e, após a validação no sistema, o usuário recebe o acesso ao sistema de monitoramento.
Só existe um tipo de usuário que é o funcionário da segurança e este possui permissão
para: “Alterar o estado da zona, Renomear Zona, Fazer download do vídeo” e todas as
visualizações.

Atores Funcionário

Pré-condições O ator deve estar cadastrado no sistema

Pós-condições O ator fica habilitado a interagir com o sistema

Fluxo básico

1. O ator decide se autenticar no sistema.

2. O sistema solicita as informações obrigatórias para autenticação: usuário e
senha.

3. O ator informa os dados.

4. O sistema valida os dados.

5. O sistema habilita o acesso do ator.

6. A página de visualização do sistema é carregada

Fluxo alternativo A

1. No passo 4 do Fluxo Básico, caso haja erro na autenticação.

2. O sistema informa erro ao ator.

3. O sistema volta para o passo 2 do Fluxo Básico.

UC-02 Fazer Logout Este caso de uso especifica a ação de encerramento da sessão de
trabalho. O objetivo é impedir invasões ao sistema por meio de uma sessão já aberta.

Atores Funcionário

Pré-condições O usuário precisa estar autenticado no sistema

Pós-condições O usuário não possui acesso ao sistema

60 APÊNDICE B. Diagramas do sistema PHP

UC-03 Renomear Zona Este caso de uso especifica a ação de editar o nome de uma
zona. O objetivo é criar uma relação direta da zona que o funcionário está visualizando e
o local que essa zona representa. Deve ser passados o código da zona e o novo nome dela.

Atores Funcionário

Pré-condições O usuário precisa estar autenticado no sistema e a zona precisa estar
cadastrada

Pós-condições A zona está cadastrada com um novo rótulo

UC-04 Visualizar Zona Este caso de uso especifica a ação de visualização da zona.
O objetivo é reunir toda a informação relativa a uma zona e exibi-la de forma clara e
concisa. Deve ser passado o código da zona e serão exibidos o rótulo da zona, o seu estado
e a lista de eventos associados a essa zona. Nessa tela o usuário deve ter a opção de alterar
o estado da zona.

Atores Funcionário

Pré-condições O usuário precisa estar autenticado no sistema e a zona precisa estar
cadastrada

Pós-condições

UC-05 Listar Log de Eventos Este caso de uso especifica a ação de listar o log de
eventos do sistema, com o objetivo de passar ao usuário uma visão geral dos eventos que
acontecem do sistema. O usuário precisa estar autenticado no sistema.

Atores Funcionário

Pré-condições O usuário precisa estar autenticado no sistema

Pós-condições

UC-06 Fazer Download Este caso de uso especifica a ação de fazer o download de um
arquivo de vídeo do servidor. Somente usuários autenticados podem executar essa ação.
Deve ser passado o código do arquivo que será baixado.

Atores Funcionário

Pré-condições O usuário precisa estar autenticado no sistema

Pós-condições O usuário possui o arquivo de vídeo

B.1. Casos de uso 61

Fluxo básico

1. O ator decide baixar um arquivo do sistema.

2. O sistema recebe o código do arquivo.

3. O sistema cria um vídeo temporário com todas as imagens que encontrar no
servidor.

4. O sistema força o download do arquivo.

UC-07 Visualizar Sistema Este caso de uso especifica a ação de visualizar o sistema.
O objetivo é reunir toda a informação relativa ao sistema e exibi-la de forma clara e
concisa.

Atores Funcionário

Pré-condições O usuário precisa estar autenticado no sistema

Pós-condições

UC-08 Atualizar Status da Zona PHP Este caso de uso especifica a ação de alterar
o estado da zona que é feita pelo funcionário da segurança. Ele pode alterar o estado da
zona para os seguintes estados: “Seguro, alerta ou invasão”. Deve ser salvo um log da ação
realizada. Deve ser passados o código da zona e o novo estado.

Atores Funcionário

Pré-condições O usuário precisa estar autenticado no sistema

Pós-condições O estado da zona é alterado. Um log da ação é criado

UC-09 Enviar Imagem Este caso de uso especifica a ação de envio de imagem para
o sistema de informação. Devem ser passados: o código da zona que a imagem pertence,
o código do arquivo de vídeo que está sendo construído, o número do frame que essa
imagem representa e os dados da imagem. Essa ação retorna o estado da zona cujo código
foi passado.

Atores ServerPHP

Pré-condições A zona deve estar cadastrada. O arquivo de vídeo deve estar cadastrado

Pós-condições A imagem fica salva no servidor. O estado da zona é retornado ao usuário

Fluxo básico

62 APÊNDICE B. Diagramas do sistema PHP

1. O sistema recebe um post do tipo enviarImagem.

2. O sistema recebe os dados do post: código da zona, código do arquivo vídeo,
numero do frame, string da imagem.

3. O sistema busca o status da zona.

4. O sistema decodifica o string da imagem e a salva no servidor.

5. O sistema retorna o status da zona.

Fluxo alternativo A

1. No passo 3 do Fluxo Básico, caso haja erro na busca pelo status.

2. O sistema retorna um erro ao ator.

UC-10 Verificar dados de Login Este caso de uso especifica a ação de validação dos
dados de autenticação. Devem ser passadas as informações de login: “usuário e senha”.

Atores ServerPHP

Pré-condições Usuário e senha para serem validados

Pós-condições Usuário e senha validados

UC-11 Registrar Evento Este caso de uso especifica a ação de registrar os eventos
que acontecem no sistema com o objetivo de criar um log de seu ciclo de vida. Devem ser
passados o código da zona em que o evento ocorreu, o código da ação ocorrida, o código
do funcionário que realizou a ação e , se existir, o código do arquivo de vídeo gerado.

Atores ServerPHP

Pré-condições As ações: “Marcar como Seguro, Marcar como Alerta, Marcar como In-
vasão, Renomear Zona, Inserir Zona” devem estar cadastradas. O funcionário, a
zona e o arquivo de vídeo também devem estar cadastrados

Pós-condições Um evento é criado

UC-12 Carregar Zonas Este caso de uso especifica a ação de cadastrar uma zona
no sistema de informação para passar a monitorá-la ou alterar o estado de uma zona já
cadastrada. Devem ser passados o código da zona e o seu estado. Quando o estado da
zona está em alerta ou invasão deve ser passado o código do arquivo de vídeo que será
criado.

Atores ServerPHP

B.2. Diagramas de sequência 63

Pré-condições Zona não cadastrada ou zona cadastrada com um estado diferente do
estado enviado

Pós-condições Zona cadastrada e com novo estado

Fluxo básico

1. O sistema recebe um post do tipo carregarZonas.

2. O sistema recebe os dados do post: número de zonas, código da zona, código
do arquivo vídeo.

3. O sistema verifica se a zona já existe.

4. O sistema cadastra a nova zona.

5. Se o estado for 2 (alerta) ou 3 (invasão). O sistema cadastra o arquivo de vídeo.

6. O sistema registra o evento.

Fluxo alternativo A

1. No passo 3 do Fluxo Básico, caso a zona já exista.

2. O sistema atualiza o estado da zona.

3. O sistema vai para o estado 5 do Fluxo Básico.

B.2 Diagramas de sequência

Figura 18 – Diagrama de sequência do caso carregar zonas

64 APÊNDICE B. Diagramas do sistema PHP

Figura 19 – Diagrama de sequência do caso fazer download

Figura 20 – Diagrama de sequência do caso fazer login

B.3. Diagrama de classes 65

Figura 21 – Diagrama de sequência do caso enviar imagem

B.3 Diagrama de classes
O diagrama de classes demonstra a estrutura estática das classes de um sistema

e suas relações que servem de modelo para os objetos. Através deste diagrama podemos
mais uma vez perceber a interação dos elementos da estrutura MVC-Component adotada
para esse sistema.

B.4 Diagrama entidade relação
Utilizamos a técnica de abordagem Entidade-Relacionamento que é considerada

como um padrão para a modelagem conceitual. Essa técnica procura representar de forma
abstrata os dados que serão armazenados no banco de dados tendo como base o conceito
de que o mundo é formado por um conjunto de objetos chamados de entidades e seus
relacionamentos entre si.

Este modelo de dados dará origem ao script SQL que utilizamos para construir
a nossa estrutura de dados e para ilustrar esse modelo de dados vamos usar um modelo
diagramático chamado Diagrama Entidade-Relacionamento.

66 APÊNDICE B. Diagramas do sistema PHP

Figura 22 – Diagrama de classes da Framework

B.4. Diagrama entidade relação 67

Figura 23 – Diagrama de classes da aplicação

68 APÊNDICE B. Diagramas do sistema PHP

Figura 24 – Diagrama entidade relação

69

APÊNDICE C – Descrição do sistema PHP

C.0.1 Framework

Desenvolver software em PHP puro é uma tarefa cansativa e demorada, por isso
com o objetivo de tornar o desenvolvimento dinâmico optamos por desenvolver um fra-
mework sob os moldes do padrão MVC. As características desse framework são:

∙ Orientado a objetos

∙ Utilizada o padrão MVC

∙ Faz tratamento de url

∙ Possui acesso ao banco de dados simplificado (create, read, update, delete)

∙ Conecta-se com vários bancos de dados simultaneamente

O framework possui os seguintes arquivos:

Config.php Esse arquivo é responsável por definir diretórios importantes como o dire-
tório raiz da aplicação e o diretório de estilos utilizados. Ele também é responsável
pela configuração de acesso (host,senha,dbname) ao banco de dados utilizado.

Component.php Esse arquivo contém a superclasse de todos os componentes da aplica-
ção, ela contém funções que são comumente usadas em qualquer componente como
as funções incluir model, component.

Controller.php Esse arquivo contém a superclasse de todos os controladores da aplica-
ção, ela contém funções que são comumente usadas em qualquer controle como as
funções incluir model, component, view e redirecionar páginas.

Model.php Esse arquivo contém a superclasse de todos os modelos da aplicação, ela
contém funções que são comumente usadas em qualquer modelo como as funções de
acesso ao banco de dados create, read, update e delete.

System.php Esse arquivo contém a classe que gerencia o sistema, ele é responsável
tanto por identificar na url o controlador e a ação que devem ser chamados, como
também organizar os parâmetros passados via url. Essa classe faz consistência dos
dados testando se o controlador e a ação são válidos, seta a codificação como UTF8
e ainda instancia a conexão com os banco de dados definidos em Config.php.

70 APÊNDICE C. Descrição do sistema PHP

C.0.2 Models

A partir dos diagramas de entidade relação são definidos os modelos que serão
usados para acesso ao banco de dados, esses modelos possuem como variáveis as colunas
de cada tabela e uma função validar() responsável por fazer a consistência dos dados antes
de enviá-los ao banco. Todos herdam a classe Model.php e porisso as suas funções.

∙ arquivo_videoModel.php

∙ zonaModel.php

∙ log_eventosModel.php

∙ acaoModel.php

∙ statusModel.php

∙ funcionarioModel.php

C.0.3 Views

As views do sistema são a porta de comunicação com o usuário, a interface homem
máquina. Através delas enviaremos a informação do estado do sistema ao funcionário da
segurança e receberemos informação dele após a sua verificação. O sistema terá quatro
views desenvolvidas com o auxílio do template Slate Admin (ADMIN, 2013). São elas:

∙ loginView.php (figura 25)

Figura 25 – View da página de Login

71

Figura 26 – View da página do sistema

∙ sistemaView.php (figura 26)

∙ visualizarZonaView.php

∙ listarEventosView.php

C.0.4 Controllers

O controlador do sistema é responsável por intermediar as operações do usuário
com a lógica e consultas do banco de dados. Para esse sistema criamos o funcionarioCon-
troller.php que possui as seguintes funções:

actionAtualizarStatusZonaPHP($params) Função que recebe um código de zona e
um código de status e altera o status da zona no banco de dados.

actionVisualizarSistema($params) Função responsável por apresentar a view de vi-
sualização do sistema.

actionDownload($params) Função que recebe o código do arqui_video e inicia o
download.

actionListarLogEventos($params) Função que busca a lista de eventos e chama a
view responsável por sua exibição

actionLogin($params) Função que chama a view com o formulário de login.

72 APÊNDICE C. Descrição do sistema PHP

actionLogout($params) Função que encerra a sessão e redireciona para a página de
login.

actionRenomearZona($params) Função que recebe o código da zona e o novo nome
então faz a alteração no banco de dados.

actionServerRequest($params) Função que faz as chamadas de servidor.

actionAcaoInvalida($params) Função que exibe o erro de ação inválida.

actionControladorInvalido($params) Função que exibe o erro de controlador invá-
lido.

actionAcessoNegado($params) Função que exibe o erro de acesso negado.

actionSubmitLogin($params) Funçao que recebe as informações de login e verifica
sua validade.

actionVisualizarZona($params) Função que recebe o código da zona, busca as infor-
mações da zona e chama a view de exibição.

C.0.5 Components

Os componentes são usados para isolar a lógica do controlador e deixá-lo somente
com a função de direcionamento. Com esse fim foram criados:

class verificarLoginComponent Classe responsável por verificar as informações de lo-
gin.

class registrarEventoComponent Classe responsável por registrar um evento.

class enviarImagemComponent Classe responsável por receber as imagens

class downloadComponent Classe responsável por executar a rotina de download.

class carregarZonasComponent Classe responsável por registrar todas as zonas que
estão sendo monitoradas.

C.0.6 Server

O server é um arquivo que contém as funções que realizam os serviços do sistema.
São elas:

carregarZonas($params) Função que recebe uma chamada ros e cadastra as zonas
que estão sendo monitoradas no bando de dados.

73

enviarImagem($params) Função que recebe a imagem e salva no servidor.

registrarEvento($codigo_zona, $codigo_arquivo, $codigo_acao,
$codigo_funcionario, $conexao) Função que registra o evento ocorrido.

verificarLogin($usuario, $senha) Função que recebe os dados de login e verifica a
validade deles.

75

APÊNDICE D – Algoritmos para detecção de
invasão

D.1 Comparação de frames subsequentes

Neste projeto utilizaremos um simples algoritmo que compara imagens subsequen-
tes pixel a pixel. Se um pixel localizado na mesmo posição em imagens subsequentes é
diferente, significa que há algo diferente na imagem, ou seja, algo se movimentando.

O problema deste método é que pequenas alterações e ruídos poderiam ser tomados
como movimentos e consequentemente invasões. Por exemplo, a oscilação de luminosidade
no ambiente altera levemente o pixel e, portanto, é considerado um pixel diferente. Para
sanar este problema foi aplicado a todas as imagens recebidas pelo agente um filtro binário,
que transforma todos os pixels em 1 ou 0. Desta maneira pequenos ruídos e variações de
luminosidade teriam o mesmo valor e não influenciariam no resultado final. Além disso,
para fazer a comparação das imagens subsequentes o processo torna-se apenas a aplicação
do operador lógico XOR pixel a pixel.

A partir da imagem original da figura 27, foi obtido a partir deste algoritmo o
resultado observado na figura 28.

Figura 27 – Imagem original

Para analisar se houve ou não uma invasão observamos a quantidade de pixels
diferentes em imagens subsequentes. Se existe mais de 1% de pixels diferentes é conside-

76 APÊNDICE D. Algoritmos para detecção de invasão

Figura 28 – Resultado da comparação de frames subsequentes a partir da imagem original
da figura 27

rado que há um movimento estranho na imagem e um publisher deste agente envia uma
mensagem de status avisando que houve a detecção de uma invasão nesta câmera.

D.2 Comparação com o primeiro frame

Outro algoritmo que poderia ser utilizado para a detecção de invasões poderia ser
a comparação com o primeiro frame captado, ou seja, a imagem quando é sabido que
não há movimentação na área e ela se encontra em um estado de segurança. Além disso,
este algoritmo tem um ponto positivo, pois poderia ser utilizado para detectar objetos
estranhos e imóveis na imagem.

Utilizando novamente a imagem original 27 é utilizado o algoritmo em questão e
o resultado pode ser visualizado na figura 29.

O resultado obtido é, em alguns casos, melhor do que o obtido pela comparação de
frames subsequentes. No entanto, este algoritmo é extremamente sensível, pois pequenas
diferenças na imagem podem ser consideradas diferentes e detectadas como invasão apesar
de não ser absolutamente nada. Um exemplo deste problema pode ser observado através
da imagem original 30 e o resultado da comparação com o primeiro frame na figura 31.

Como pode ser observado, nesta figura é detectado uma diferença na imagem,
que, na verdade, não existe. Esta diferença pode ser causado por pequenas diferenças de
luminosidade e/ou outras condições do espaço. Desta maneira, este algoritmo não seria
utilizável em um ambiente aberto, onde haveria diferença de luminosidade entre o dia e a
noite, por exemplo.

D.3. Contornos de imagens 77

Figura 29 – Resultado da comparação da imagem original da figura 27 com o primeiro
frame

Figura 30 – Imagem original

D.3 Contornos de imagens

Uma solução melhor para detectar a invasão de um ambiente seriam a detecção de
bordas na imagem eliminando o fundo da imagem. Com esta função seria fácil detectar
movimento no ambiente. Existem funções prontas para isso no OpenCV, por exemplo, a
função findContours. O resultado deste algoritmo pode ser visto nas figuras 32 e 33.

Os resultados obtidos nessas imagens foram obtidas no desenvolvimento do pro-
grama fora do ambiente ROS. No entanto, ao utilizar esta função dentro do ambiente
ROS houve um problema de compatibilidade entre o OpenCV e o ROS e, por isso, esta

78 APÊNDICE D. Algoritmos para detecção de invasão

Figura 31 – Resultado da comparação da imagem original da figura 30 com o primeiro
frame

Figura 32 – Primeiro resultado do algoritmo para encontrar os contornos de imagens

solução não pode ser utilizada.

D.3. Contornos de imagens 79

Figura 33 – Segundo resultado do algoritmo para encontrar os contornos de imagens

81

APÊNDICE E – Documentação projeto ROS

My Project

Generated by Doxygen 1.7.6.1

Tue Nov 5 2013 00:00:35

Contents

1 Class Index 1

1.1 Class List . 1

2 Class Documentation 3

2.1 Communicator Class Reference . 3

2.1.1 Detailed Description . 3

2.1.2 Constructor & Destructor Documentation 3

2.1.2.1 Communicator . 3

2.1.2.2 ∼Communicator . 3

2.1.3 Member Function Documentation 4

2.1.3.1 fixPercentEncoding 4

2.1.3.2 getImageb64 . 4

2.1.3.3 run . 4

2.1.3.4 sendImage . 4

2.2 Interpreter Class Reference . 5

2.2.1 Detailed Description . 5

2.2.2 Constructor & Destructor Documentation 5

2.2.2.1 Interpreter . 5

2.2.2.2 ∼Interpreter . 5

2.2.3 Member Function Documentation 6

2.2.3.1 imageCallback . 6

2.3 Monitor Class Reference . 6

2.3.1 Detailed Description . 6

2.3.2 Constructor & Destructor Documentation 6

2.3.2.1 Monitor . 6

2.3.2.2 ∼Monitor . 7

ii CONTENTS

2.4 SensorMonitor Class Reference . 7

2.4.1 Detailed Description . 7

2.4.2 Constructor & Destructor Documentation 8

2.4.2.1 SensorMonitor . 8

2.4.2.2 ∼SensorMonitor . 8

2.4.3 Member Function Documentation 8

2.4.3.1 fixDigits . 8

2.4.3.2 getVideoCode . 8

2.4.3.3 getZoneState . 8

2.4.3.4 imageCallback . 9

2.4.3.5 statusCallback . 9

2.4.3.6 updateState . 9

Generated on Tue Nov 5 2013 00:00:35 for My Project by Doxygen

Chapter 1

Class Index

1.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Communicator . 3
Interpreter . 5
Monitor . 6
SensorMonitor . 7

2 Class Index

Generated on Tue Nov 5 2013 00:00:35 for My Project by Doxygen

Chapter 2

Class Documentation

2.1 Communicator Class Reference

Public Member Functions

• Communicator ()
• ∼Communicator ()
• void run ()

Protected Member Functions

• void fixPercentEncoding (std::string &str)
• int sendImage (std::string zone, std::string video, std::string frame, std::string im-

age)
• std::string getImageb64 (std::string image_name)

2.1.1 Detailed Description

Agent Communicator analyzes if there is an jpg image saved in the images directory. If
it does, the agent send the image to the server via an HTTP request

2.1.2 Constructor & Destructor Documentation

2.1.2.1 Communicator::Communicator () [inline]

Constructor of class Communicator

2.1.2.2 Communicator::∼Communicator () [inline]

Destructor of class Communicator

4 Class Documentation

2.1.3 Member Function Documentation

2.1.3.1 void Communicator::fixPercentEncoding (std::string & str) [inline,
protected]

Replace special characters with percent encoding

Parameters
str String to be fixed

2.1.3.2 std::string Communicator::getImageb64 (std::string image name)
[inline, protected]

Encode image to base64

Parameters
_image Image to be encoded

Returns

Encoded string of the image

2.1.3.3 void Communicator::run () [inline]

Run the agent communicator in order to analyze images in directory and send found
images

2.1.3.4 int Communicator::sendImage (std::string zone, std::string video, std::string
frame, std::string image) [inline, protected]

Send image encoded in base64 to the server

Parameters
zone Number of the zone where the sensor is
video Unique identifier from video
frame Number of the frame this image correspond to
image Image encoded in base64

Returns

State of the zone from the server

The documentation for this class was generated from the following file:

Generated on Tue Nov 5 2013 00:00:35 for My Project by Doxygen

2.2 Interpreter Class Reference 5

• communicator.cpp

2.2 Interpreter Class Reference

Public Member Functions

• Interpreter (int zone_number, int interpreter_number)
• ∼Interpreter ()

Protected Member Functions

• void imageCallback (const sensor_msgs::ImageConstPtr &msg)

Protected Attributes

• ros::NodeHandle nh_
• image_transport::ImageTransport it_
• image_transport::Subscriber image_sub_
• ros::Publisher status_pub_
• cv::Mat _mat

2.2.1 Detailed Description

Agent Interpreter is responsible for getting the images feed from the corresponding
sensor, analyzing it and sending a message feed containing a status, which is true if
there is something strange in the image, f.i. an intruder, and false if everything is normal

2.2.2 Constructor & Destructor Documentation

2.2.2.1 Interpreter::Interpreter (int zone number, int interpreter number) [inline]

Construtor of class Interpreter

Parameters
zone_-

number
Number of the zone the interpreter will act on

interpreter_-
number

Number of the new interpreter

2.2.2.2 Interpreter::∼Interpreter () [inline]

Destructor of class Interpreter

Generated on Tue Nov 5 2013 00:00:35 for My Project by Doxygen

6 Class Documentation

2.2.3 Member Function Documentation

2.2.3.1 void Interpreter::imageCallback (const sensor msgs::ImageConstPtr & msg)
[inline, protected]

Callback function, that is called when the sensor sends an image

Parameters
msg Image sent by the sensor

The documentation for this class was generated from the following file:

• my_subscriber.cpp

2.3 Monitor Class Reference

Public Member Functions

• Monitor (int zone_number, int interpreter_number, int sensor_number)
• ∼Monitor ()

Protected Attributes

• ros::NodeHandle nh_
• ros::Subscriber status_sub_ [10]
• image_transport::ImageTransport it_
• image_transport::Subscriber image_sub_ [10]

2.3.1 Detailed Description

Class Monitor

Agent Monitor converges signals from all sensors and interpreters in a zone and creates
one SensorAgent for each pair of agents sensor and interpreter

2.3.2 Constructor & Destructor Documentation

2.3.2.1 Monitor::Monitor (int zone number, int interpreter number, int sensor number)
[inline]

Construtor of class Monitor

Generated on Tue Nov 5 2013 00:00:35 for My Project by Doxygen

2.4 SensorMonitor Class Reference 7

Parameters
zone_-

number
Number of the zone the monitor will control

interpreter_-
number

Number of interpreters running in this zone

sensor-
Number

Number of sensors running in this zone

2.3.2.2 Monitor::∼Monitor () [inline]

Destructor of class Monitor

The documentation for this class was generated from the following file:

• monitor.cpp

2.4 SensorMonitor Class Reference

Public Member Functions

• SensorMonitor (int _zone_number, int _sensor_number)
• ∼SensorMonitor ()
• void imageCallback (const sensor_msgs::ImageConstPtr &msg)
• void statusCallback (const std_msgs::Bool status)

Protected Member Functions

• void updateState (int zone, int sensor, int state, std::string video)
• int getZoneState (int zone)
• std::string getVideoCode ()
• std::string fixDigits (int input, int number_digits)

Protected Attributes

• int zone_number
• int sensor_number
• int zone_state
• int sensor_state
• int frame_count
• std::string video_code

2.4.1 Detailed Description

Agent SensorMonitor groups signals from one sensor and its corresponding interpreter
and responds to an invasion in a zone by saving the corresponding image to jpg file

Generated on Tue Nov 5 2013 00:00:35 for My Project by Doxygen

8 Class Documentation

2.4.2 Constructor & Destructor Documentation

2.4.2.1 SensorMonitor::SensorMonitor (int zone number, int sensor number)
[inline]

Construtor of class SensorMonitor

Parameters
zone_-

number
Number of the zone the monitor is controlling

sensor-
Number

Number of the sensor in this zone

2.4.2.2 SensorMonitor::∼SensorMonitor () [inline]

Destructor of class SensorMonitor

2.4.3 Member Function Documentation

2.4.3.1 std::string SensorMonitor::fixDigits (int input, int number digits) [inline,
protected]

Get integer with the wanted numbers of digits

Parameters
input Integer to transform

number_-
digits

Desired number of digits

Returns

String containing integer with the number of digits desired

2.4.3.2 std::string SensorMonitor::getVideoCode () [inline, protected]

Create an unique identifier for a video of a camera in a zone

Returns

Unique identifier

2.4.3.3 int SensorMonitor::getZoneState (int zone) [inline, protected]

Get the zone state from the server

Generated on Tue Nov 5 2013 00:00:35 for My Project by Doxygen

2.4 SensorMonitor Class Reference 9

Parameters
zone Number of the zone where the sensor is

Returns

State of the zone from the server

2.4.3.4 void SensorMonitor::imageCallback (const sensor msgs::ImageConstPtr & msg
) [inline]

Callback function, that is called when the sensor sends an image

Parameters
msg Image sent by the sensor

2.4.3.5 void SensorMonitor::statusCallback (const std msgs::Bool status)
[inline]

Callback function, that is called when the interpreter sends an status message

Parameters
status Whether the interpreter identified someone in the image or not

2.4.3.6 void SensorMonitor::updateState (int zone, int sensor, int state, std::string video
) [inline, protected]

Update state of the sensor in the server through an HTTP request

Parameters
zone Number of the zone where the sensor is

sensor Number of the sensor in this zone
state State of the sensor
video Unique identifier from video

The documentation for this class was generated from the following file:

• monitor.cpp

Generated on Tue Nov 5 2013 00:00:35 for My Project by Doxygen

95

APÊNDICE F – Documentação projeto PHP

My Project

Generated by Doxygen 1.8.5

Thu Nov 7 2013 12:28:21

Contents

1 Hierarchical Index 1

1.1 Class Hierarchy . 1

2 Data Structure Index 3

2.1 Data Structures . 3

3 Data Structure Documentation 5

3.1 acaoModel Class Reference . 5

3.1.1 Detailed Description . 5

3.1.2 Member Function Documentation . 5

3.1.2.1 toArray . 5

3.1.2.2 validar . 6

3.2 arquivo_videoModel Class Reference . 6

3.2.1 Detailed Description . 6

3.2.2 Member Function Documentation . 6

3.2.2.1 toArray . 6

3.2.2.2 validar . 7

3.3 carregarZonasComponent Class Reference . 7

3.3.1 Detailed Description . 7

3.3.2 Constructor & Destructor Documentation . 7

3.3.2.1 __construct . 7

3.3.3 Member Function Documentation . 7

3.3.3.1 run . 7

3.4 Component Class Reference . 8

3.4.1 Detailed Description . 8

3.4.2 Member Function Documentation . 8

3.4.2.1 component . 8

3.4.2.2 model . 8

3.5 Controller Class Reference . 8

3.5.1 Detailed Description . 9

3.5.2 Member Function Documentation . 9

3.5.2.1 component . 9

iv CONTENTS

3.5.2.2 model . 9

3.5.2.3 redirect . 9

3.5.2.4 view . 9

3.6 downloadComponent Class Reference . 10

3.6.1 Detailed Description . 10

3.6.2 Constructor & Destructor Documentation . 10

3.6.2.1 __construct . 10

3.6.3 Member Function Documentation . 10

3.6.3.1 run . 10

3.7 enviarImagemComponent Class Reference . 11

3.7.1 Detailed Description . 11

3.7.2 Constructor & Destructor Documentation . 11

3.7.2.1 __construct . 11

3.7.3 Member Function Documentation . 11

3.7.3.1 run . 11

3.8 funcionarioController Class Reference . 12

3.8.1 Detailed Description . 12

3.8.2 Constructor & Destructor Documentation . 12

3.8.2.1 __construct . 12

3.8.3 Member Function Documentation . 12

3.8.3.1 actionAcaoInvalida . 12

3.8.3.2 actionAcessoNegado . 13

3.8.3.3 actionAtualizarStatusZonaPHP . 13

3.8.3.4 actionControladorInvalido . 13

3.8.3.5 actionDownload . 13

3.8.3.6 actionListarLogEventos . 13

3.8.3.7 actionLogin . 13

3.8.3.8 actionLogout . 13

3.8.3.9 actionRenomearZona . 13

3.8.3.10 actionServerRequest . 13

3.8.3.11 actionSubmitLogin . 14

3.8.3.12 actionVisualizarSistema . 14

3.8.3.13 actionVisualizarZona . 14

3.9 funcionarioModel Class Reference . 14

3.9.1 Detailed Description . 14

3.9.2 Member Function Documentation . 15

3.9.2.1 toArray . 15

3.9.2.2 validar . 15

3.10 log_eventosModel Class Reference . 15

3.10.1 Detailed Description . 15

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

CONTENTS v

3.10.2 Member Function Documentation . 16

3.10.2.1 toArray . 16

3.10.2.2 validar . 16

3.11 Model Class Reference . 16

3.11.1 Detailed Description . 16

3.11.2 Constructor & Destructor Documentation . 17

3.11.2.1 __construct . 17

3.11.3 Member Function Documentation . 17

3.11.3.1 delete . 17

3.11.3.2 insert . 17

3.11.3.3 read . 17

3.11.3.4 sql . 17

3.11.3.5 update . 17

3.12 registrarEventoComponent Class Reference . 18

3.12.1 Detailed Description . 18

3.12.2 Constructor & Destructor Documentation . 18

3.12.2.1 __construct . 18

3.12.3 Member Function Documentation . 18

3.12.3.1 run . 18

3.13 statusModel Class Reference . 19

3.13.1 Detailed Description . 19

3.13.2 Member Function Documentation . 19

3.13.2.1 toArray . 19

3.13.2.2 validar . 19

3.14 System Class Reference . 20

3.14.1 Detailed Description . 20

3.14.2 Constructor & Destructor Documentation . 20

3.14.2.1 __construct . 20

3.14.3 Member Function Documentation . 20

3.14.3.1 run . 20

3.15 verificarLoginComponent Class Reference . 20

3.15.1 Detailed Description . 20

3.15.2 Constructor & Destructor Documentation . 21

3.15.2.1 __construct . 21

3.15.3 Member Function Documentation . 21

3.15.3.1 run . 21

3.16 zonaModel Class Reference . 21

3.16.1 Detailed Description . 22

3.16.2 Member Function Documentation . 22

3.16.2.1 toArray . 22

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

vi CONTENTS

3.16.2.2 validar . 22

Index 23

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

Chapter 1

Hierarchical Index

1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Component . 8

carregarZonasComponent . 7
downloadComponent . 10
enviarImagemComponent . 11
registrarEventoComponent . 18
verificarLoginComponent . 20

Controller . 8

funcionarioController . 12

Model . 16

acaoModel . 5
arquivo_videoModel . 6
funcionarioModel . 14
log_eventosModel . 15
statusModel . 19
zonaModel . 21

System . 20

2 Hierarchical Index

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

Chapter 2

Data Structure Index

2.1 Data Structures

Here are the data structures with brief descriptions:

acaoModel . 5
arquivo_videoModel . 6
carregarZonasComponent . 7
Component . 8
Controller . 8
downloadComponent . 10
enviarImagemComponent . 11
funcionarioController . 12
funcionarioModel . 14
log_eventosModel . 15
Model . 16
registrarEventoComponent . 18
statusModel . 19
System . 20
verificarLoginComponent . 20
zonaModel . 21

4 Data Structure Index

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

Chapter 3

Data Structure Documentation

3.1 acaoModel Class Reference

Inheritance diagram for acaoModel:

acaoModel

Model

Public Member Functions

• validar ()

• toArray ()

Data Fields

• $_tabela = "acao"

• $_codigo
• $_descricao

Additional Inherited Members

3.1.1 Detailed Description

Classe responsável pelo acesso a tabela "acao" do banco de dados

Definition at line 5 of file acaoModel.php.

3.1.2 Member Function Documentation

3.1.2.1 toArray ()

Função que transforma as variáveis de um objeto tipo Model num array.

Definition at line 18 of file acaoModel.php.

6 Data Structure Documentation

3.1.2.2 validar ()

Função que verifica se os dados estão prontos para ser inseridos no banco de dados

Definition at line 13 of file acaoModel.php.

The documentation for this class was generated from the following file:

• C:/xampp/htdocs/sistema_de_seguranca/app/models/funcionario/acaoModel.php

3.2 arquivo_videoModel Class Reference

Inheritance diagram for arquivo_videoModel:

arquivo_videoModel

Model

Public Member Functions

• validar ()

• toArray ()

Data Fields

• $_tabela = "arquivo_video"

• $_codigo

• $_codigo_funcionario

• $_codigo_zona

• $_data

• $_nome

Additional Inherited Members

3.2.1 Detailed Description

Classe responsável pelo acesso a tabela "aruivo_video" do banco de dados

Definition at line 5 of file arquivo_videoModel.php.

3.2.2 Member Function Documentation

3.2.2.1 toArray ()

Função que transforma as variáveis de um objeto tipo Model num array.

Definition at line 21 of file arquivo_videoModel.php.

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

3.3 carregarZonasComponent Class Reference 7

3.2.2.2 validar ()

Função que verifica se os dados estão prontos para ser inseridos no banco de dados

Definition at line 15 of file arquivo_videoModel.php.

The documentation for this class was generated from the following file:

• C:/xampp/htdocs/sistema_de_seguranca/app/models/funcionario/arquivo_videoModel.php

3.3 carregarZonasComponent Class Reference

Inheritance diagram for carregarZonasComponent:

carregarZonasComponent

Component

Public Member Functions

• __construct ()

• run ()

Additional Inherited Members

3.3.1 Detailed Description

Classe responsável por registrar todas as zonas que estão sendo monitoradas.

Definition at line 4 of file carregarZonasComponent.php.

3.3.2 Constructor & Destructor Documentation

3.3.2.1 __construct ()

Construtor da classe carregarZonasComponent

Definition at line 10 of file carregarZonasComponent.php.

3.3.3 Member Function Documentation

3.3.3.1 run ()

Função que recebe o post com as informações da zona e as registra no banco de dados.

Definition at line 16 of file carregarZonasComponent.php.

The documentation for this class was generated from the following file:

• C:/xampp/htdocs/sistema_de_seguranca/app/components/funcionario/carregarZonasComponent.php

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

8 Data Structure Documentation

3.4 Component Class Reference

Inheritance diagram for Component:

Component

carregarZonasComponent downloadComponent enviarImagemComponent registrarEventoComponent verificarLoginComponent

Protected Member Functions

• model ($nome)
• component ($nome)

3.4.1 Detailed Description

Classe base dos componentes

Definition at line 4 of file Component.php.

3.4.2 Member Function Documentation

3.4.2.1 component ($nome) [protected]

Função que inclui um componente para ser usado no componente

Parameters

$nome nome do componente

Definition at line 14 of file Component.php.

3.4.2.2 model ($nome) [protected]

Função que inclui um model para ser usado no componente

Parameters

$nome nome do model

Definition at line 8 of file Component.php.

The documentation for this class was generated from the following file:

• C:/xampp/htdocs/sistema_de_seguranca/system/Component.php

3.5 Controller Class Reference

Inheritance diagram for Controller:

Controller

funcionarioController

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

3.5 Controller Class Reference 9

Protected Member Functions

• view ($nome, $params=array(), $dados=array())
• model ($nome)
• component ($nome)
• redirect ($controller, $action, $params)

3.5.1 Detailed Description

Classe base dos controladores

Definition at line 4 of file Controller.php.

3.5.2 Member Function Documentation

3.5.2.1 component ($nome) [protected]

Função que inclui um componente para ser usado no controlador

Parameters

$nome nome do componente

Definition at line 22 of file Controller.php.

3.5.2.2 model ($nome) [protected]

Função que inclui um model para ser usado no controlador

Parameters

$nome nome do model

Definition at line 16 of file Controller.php.

3.5.2.3 redirect ($controller, $action, $params) [protected]

Função que redireciona para uma nova página.

Parameters

$controller nome do controlador
$action nome da ação

$params parametros que serao passados via url

Definition at line 30 of file Controller.php.

3.5.2.4 view ($nome, $params = array(), $dados = array()) [protected]

Função que inclui o html de uma view

Parameters

$nome nome da view

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

10 Data Structure Documentation

$params conteúdo da url
$dados informações a serem passadas para a view.

Definition at line 10 of file Controller.php.

The documentation for this class was generated from the following file:

• C:/xampp/htdocs/sistema_de_seguranca/system/Controller.php

3.6 downloadComponent Class Reference

Inheritance diagram for downloadComponent:

downloadComponent

Component

Public Member Functions

• __construct ($codigo_arquivo)

• run ()

Additional Inherited Members

3.6.1 Detailed Description

Classe responsável por executar a rotina de download.

Definition at line 4 of file downloadComponent.php.

3.6.2 Constructor & Destructor Documentation

3.6.2.1 __construct ($codigo_arquivo)

Construtor da classe downloadComponent

Parameters

$codigo_arquivo código do arquivo que será baixado

Definition at line 12 of file downloadComponent.php.

3.6.3 Member Function Documentation

3.6.3.1 run ()

Função que cria o video temporário e força o download do video.

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

3.7 enviarImagemComponent Class Reference 11

See Also

criar_video_temporario($temp, $codigo_arquivo).

Definition at line 30 of file downloadComponent.php.

The documentation for this class was generated from the following file:

• C:/xampp/htdocs/sistema_de_seguranca/app/components/funcionario/downloadComponent.php

3.7 enviarImagemComponent Class Reference

Inheritance diagram for enviarImagemComponent:

enviarImagemComponent

Component

Public Member Functions

• __construct ()
• run ()

Additional Inherited Members

3.7.1 Detailed Description

Classe responsável por receber as imagens

Definition at line 4 of file enviarImagemComponent.php.

3.7.2 Constructor & Destructor Documentation

3.7.2.1 __construct ()

Construtor da classe enviarImagemComponent

Definition at line 10 of file enviarImagemComponent.php.

3.7.3 Member Function Documentation

3.7.3.1 run ()

Função que recebe o post da imagem e a salva no servvidor

See Also

processarImagem($data, $arquivo, $frame)

Definition at line 40 of file enviarImagemComponent.php.

The documentation for this class was generated from the following file:

• C:/xampp/htdocs/sistema_de_seguranca/app/components/funcionario/enviarImagemComponent.php

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

12 Data Structure Documentation

3.8 funcionarioController Class Reference

Inheritance diagram for funcionarioController:

funcionarioController

Controller

Public Member Functions

• __construct ()
• actionAtualizarStatusZonaPHP ($params)
• actionVisualizarSistema ($params)
• actionDownload ($params)
• actionListarLogEventos ($params)
• actionLogin ($params)
• actionLogout ($params)
• actionRenomearZona ($params)
• actionServerRequest ($params)
• actionAcaoInvalida ($params)
• actionControladorInvalido ($params)
• actionAcessoNegado ($params)
• actionSubmitLogin ($params)
• actionVisualizarZona ($params)

Additional Inherited Members

3.8.1 Detailed Description

Classe responsável por gerenciar as ações do funcionario e fazer chamadas de servidor

Definition at line 5 of file funcionarioController.php.

3.8.2 Constructor & Destructor Documentation

3.8.2.1 __construct ()

Construtor da classe funcionarioController

See Also

validaAcesso()

Definition at line 12 of file funcionarioController.php.

3.8.3 Member Function Documentation

3.8.3.1 actionAcaoInvalida ($params)

Função que exibe o erro de ação inválida.

Definition at line 259 of file funcionarioController.php.

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

3.8 funcionarioController Class Reference 13

3.8.3.2 actionAcessoNegado ($params)

Função que exibe o erro de acesso negado.

Definition at line 269 of file funcionarioController.php.

3.8.3.3 actionAtualizarStatusZonaPHP ($params)

Função que recebe um código de zona e um codigo de status e altera o status da zona no banco de dados.

Definition at line 104 of file funcionarioController.php.

3.8.3.4 actionControladorInvalido ($params)

Função que exibe o erro de controlador inválido.

Definition at line 264 of file funcionarioController.php.

3.8.3.5 actionDownload ($params)

Função que recebe o codigo do arquivo_video e inicia o download.

Definition at line 151 of file funcionarioController.php.

3.8.3.6 actionListarLogEventos ($params)

Função que busca a lista de eventos e chama a view responsável por sua exibição

Definition at line 163 of file funcionarioController.php.

3.8.3.7 actionLogin ($params)

Função que chama a view com o formulário de login.

Definition at line 196 of file funcionarioController.php.

3.8.3.8 actionLogout ($params)

Função que encerra a sessão e redireciona para a página de login.

Definition at line 201 of file funcionarioController.php.

3.8.3.9 actionRenomearZona ($params)

Função que recebe o codigo da zona e o novo nome então faz a alteração no banco de dados.

Definition at line 207 of file funcionarioController.php.

3.8.3.10 actionServerRequest ($params)

Função que faz as chamadas de servidor.

Definition at line 223 of file funcionarioController.php.

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

14 Data Structure Documentation

3.8.3.11 actionSubmitLogin ($params)

Funçao que recebe as informações de login e verifica sua validade.

Definition at line 274 of file funcionarioController.php.

3.8.3.12 actionVisualizarSistema ($params)

Função responsável por apresentar a view de visualização do sistema.

Definition at line 134 of file funcionarioController.php.

3.8.3.13 actionVisualizarZona ($params)

Função que recebe o codigo da zona, busca as informações da zona e chama a view de exibição.

Definition at line 287 of file funcionarioController.php.

The documentation for this class was generated from the following file:

• C:/xampp/htdocs/sistema_de_seguranca/app/controllers/funcionarioController.php

3.9 funcionarioModel Class Reference

Inheritance diagram for funcionarioModel:

funcionarioModel

Model

Public Member Functions

• validar ()

• toArray ()

Data Fields

• $_tabela = "funcionario"

• $_codigo

• $_nome

• $_senha

Additional Inherited Members

3.9.1 Detailed Description

Classe responsável pelo acesso a tabela "funcionario" do banco de dados

Definition at line 6 of file funcionarioModel.php.

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

3.10 log_eventosModel Class Reference 15

3.9.2 Member Function Documentation

3.9.2.1 toArray ()

Função que transforma as variáveis de um objeto tipo Model num array.

Definition at line 20 of file funcionarioModel.php.

3.9.2.2 validar ()

Função que verifica se os dados estão prontos para ser inseridos no banco de dados

Definition at line 14 of file funcionarioModel.php.

The documentation for this class was generated from the following file:

• C:/xampp/htdocs/sistema_de_seguranca/app/models/funcionario/funcionarioModel.php

3.10 log_eventosModel Class Reference

Inheritance diagram for log_eventosModel:

log_eventosModel

Model

Public Member Functions

• validar ()

• toArray ()

Data Fields

• $_tabela = "log_eventos"

• $_codigo

• $_codigo_acao

• $_codigo_arquivo

• $_codigo_funcionario

• $_codigo_zona

Additional Inherited Members

3.10.1 Detailed Description

Classe responsável pelo acesso a tabela "log_eventos" do banco de dados

Definition at line 5 of file log_eventosModel.php.

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

16 Data Structure Documentation

3.10.2 Member Function Documentation

3.10.2.1 toArray ()

Função que transforma as variáveis de um objeto tipo Model num array.

Definition at line 21 of file log_eventosModel.php.

3.10.2.2 validar ()

Função que verifica se os dados estão prontos para ser inseridos no banco de dados

Definition at line 15 of file log_eventosModel.php.

The documentation for this class was generated from the following file:

• C:/xampp/htdocs/sistema_de_seguranca/app/models/funcionario/log_eventosModel.php

3.11 Model Class Reference

Inheritance diagram for Model:

Model

acaoModel arquivo_videoModel funcionarioModel log_eventosModel statusModel zonaModel

Public Member Functions

• __construct ($connection)

• insert (array $dados)

• read ($where=null, $last=null)

• update (array $dados, $where)

• delete ($where=null)

• sql ($sql)

Data Fields

• $_tabela

Protected Attributes

• $_db

3.11.1 Detailed Description

Classe base dos models responsável pela comunicação com o banco de dados.

Definition at line 4 of file Model.php.

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

3.11 Model Class Reference 17

3.11.2 Constructor & Destructor Documentation

3.11.2.1 __construct ($connection)

Construtor da classe Model $param $connection conexão com o banco de dados

Definition at line 10 of file Model.php.

3.11.3 Member Function Documentation

3.11.3.1 delete ($where = null)

Função que realiza a query DELETE

Parameters

$where condição para a exclusão

Definition at line 51 of file Model.php.

3.11.3.2 insert (array $dados)

Função que realiza a query INSERT

Parameters

$dados dados que serão inseridos no banco de dados.

Definition at line 16 of file Model.php.

3.11.3.3 read ($where = null, $last = null)

Função que realiza a query SELECT

Parameters

$where condição de busca.

Definition at line 25 of file Model.php.

3.11.3.4 sql ($sql)

Função que executa uma query qualquer.

Parameters

$sql código sqp da query que será executada.

Definition at line 59 of file Model.php.

3.11.3.5 update (array $dados, $where)

Função que realiza a query UPDATE

Parameters

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

18 Data Structure Documentation

$dados dados que serão atualizados
$where condição para a atualização

Definition at line 40 of file Model.php.

The documentation for this class was generated from the following file:

• C:/xampp/htdocs/sistema_de_seguranca/system/Model.php

3.12 registrarEventoComponent Class Reference

Inheritance diagram for registrarEventoComponent:

registrarEventoComponent

Component

Public Member Functions

• __construct ($codigo_zona, $codigo_arquivo, $codigo_acao, $codigo_funcionario, $conexao)
• run ()

Additional Inherited Members

3.12.1 Detailed Description

Classe responsável por registrar um evento.

Definition at line 4 of file registrarEventoComponent.php.

3.12.2 Constructor & Destructor Documentation

3.12.2.1 __construct ($codigo_zona, $codigo_arquivo, $codigo_acao, $codigo_funcionario, $conexao)

Construtor da classe registrarEventoComponent

Parameters

$codigo_zona codigo da zona que sofreu o evento
$codigo_arquivo codigo do arquivo que foi criado, pode ser null

$codigo_acao codigo da ação realizada
$codigo_-

funcionario
codigo do funcionario que disparou o evento

$conexao conexão com o banco de dados

Definition at line 19 of file registrarEventoComponent.php.

3.12.3 Member Function Documentation

3.12.3.1 run ()

Função responsável por cadastra o evento

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

3.13 statusModel Class Reference 19

Definition at line 28 of file registrarEventoComponent.php.

The documentation for this class was generated from the following file:

• C:/xampp/htdocs/sistema_de_seguranca/app/components/funcionario/registrarEventoComponent.php

3.13 statusModel Class Reference

Inheritance diagram for statusModel:

statusModel

Model

Public Member Functions

• validar ()
• toArray ()

Data Fields

• $_tabela = "status"
• $_codigo
• $_descricao

Additional Inherited Members

3.13.1 Detailed Description

Classe responsável pelo acesso a tabela "status" do banco de dados

Definition at line 5 of file statusModel.php.

3.13.2 Member Function Documentation

3.13.2.1 toArray ()

Função que transforma as variáveis de um objeto tipo Model num array.

Definition at line 18 of file statusModel.php.

3.13.2.2 validar ()

Função que verifica se os dados estão prontos para ser inseridos no banco de dados

Definition at line 12 of file statusModel.php.

The documentation for this class was generated from the following file:

• C:/xampp/htdocs/sistema_de_seguranca/app/models/funcionario/statusModel.php

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

20 Data Structure Documentation

3.14 System Class Reference

Public Member Functions

• __construct ()
• run ()

3.14.1 Detailed Description

Classe responsável pela execução do sistema.

Definition at line 4 of file System.php.

3.14.2 Constructor & Destructor Documentation

3.14.2.1 __construct ()

Construtor da classe System

Definition at line 13 of file System.php.

3.14.3 Member Function Documentation

3.14.3.1 run ()

Função que executa a ação do controlador

Definition at line 115 of file System.php.

The documentation for this class was generated from the following file:

• C:/xampp/htdocs/sistema_de_seguranca/system/System.php

3.15 verificarLoginComponent Class Reference

Inheritance diagram for verificarLoginComponent:

verificarLoginComponent

Component

Public Member Functions

• __construct ($usuario, $senha)
• run ()

Additional Inherited Members

3.15.1 Detailed Description

Classe responsável por verificar as informações de login.

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

3.16 zonaModel Class Reference 21

Definition at line 4 of file verificarLoginComponent.php.

3.15.2 Constructor & Destructor Documentation

3.15.2.1 __construct ($usuario, $senha)

Construtor da classe verificarLoginComponent

Parameters

$usuario usuario cadastrado
$senha senha cadastrada

Definition at line 13 of file verificarLoginComponent.php.

3.15.3 Member Function Documentation

3.15.3.1 run ()

Função que verifica a validade dos dados de login

Definition at line 19 of file verificarLoginComponent.php.

The documentation for this class was generated from the following file:

• C:/xampp/htdocs/sistema_de_seguranca/app/components/funcionario/verificarLoginComponent.php

3.16 zonaModel Class Reference

Inheritance diagram for zonaModel:

zonaModel

Model

Public Member Functions

• validar ()

• toArray ()

Data Fields

• $_tabela = "zona"

• $_codigo

• $_codigo_status

• $_nome

Additional Inherited Members

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

22 Data Structure Documentation

3.16.1 Detailed Description

Classe responsável pelo acesso a tabela "zona" do banco de dados

Definition at line 5 of file zonaModel.php.

3.16.2 Member Function Documentation

3.16.2.1 toArray ()

Função que transforma as variáveis de um objeto tipo Model num array.

Definition at line 19 of file zonaModel.php.

3.16.2.2 validar ()

Função que verifica se os dados estão prontos para ser inseridos no banco de dados

Definition at line 13 of file zonaModel.php.

The documentation for this class was generated from the following file:

• C:/xampp/htdocs/sistema_de_seguranca/app/models/funcionario/zonaModel.php

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

Index

__construct
carregarZonasComponent, 7
downloadComponent, 10
enviarImagemComponent, 11
funcionarioController, 12
Model, 17
registrarEventoComponent, 18
System, 20
verificarLoginComponent, 21

acaoModel, 5
toArray, 5
validar, 5

actionAcaoInvalida
funcionarioController, 12

actionAcessoNegado
funcionarioController, 12

actionAtualizarStatusZonaPHP
funcionarioController, 13

actionControladorInvalido
funcionarioController, 13

actionDownload
funcionarioController, 13

actionListarLogEventos
funcionarioController, 13

actionLogin
funcionarioController, 13

actionLogout
funcionarioController, 13

actionRenomearZona
funcionarioController, 13

actionServerRequest
funcionarioController, 13

actionSubmitLogin
funcionarioController, 13

actionVisualizarSistema
funcionarioController, 14

actionVisualizarZona
funcionarioController, 14

arquivo_videoModel, 6
toArray, 6
validar, 6

carregarZonasComponent, 7
__construct, 7
run, 7

Component, 8
component, 8
model, 8

component

Component, 8
Controller, 9

Controller, 8
component, 9
model, 9
redirect, 9
view, 9

delete
Model, 17

downloadComponent, 10
__construct, 10
run, 10

enviarImagemComponent, 11
__construct, 11
run, 11

funcionarioController, 12
__construct, 12
actionAcaoInvalida, 12
actionAcessoNegado, 12
actionAtualizarStatusZonaPHP, 13
actionControladorInvalido, 13
actionDownload, 13
actionListarLogEventos, 13
actionLogin, 13
actionLogout, 13
actionRenomearZona, 13
actionServerRequest, 13
actionSubmitLogin, 13
actionVisualizarSistema, 14
actionVisualizarZona, 14

funcionarioModel, 14
toArray, 15
validar, 15

insert
Model, 17

log_eventosModel, 15
toArray, 16
validar, 16

Model, 16
__construct, 17
delete, 17
insert, 17
read, 17
sql, 17
update, 17

24 INDEX

model
Component, 8
Controller, 9

read
Model, 17

redirect
Controller, 9

registrarEventoComponent, 18
__construct, 18
run, 18

run
carregarZonasComponent, 7
downloadComponent, 10
enviarImagemComponent, 11
registrarEventoComponent, 18
System, 20
verificarLoginComponent, 21

sql
Model, 17

statusModel, 19
toArray, 19
validar, 19

System, 20
__construct, 20
run, 20

toArray
acaoModel, 5
arquivo_videoModel, 6
funcionarioModel, 15
log_eventosModel, 16
statusModel, 19
zonaModel, 22

update
Model, 17

validar
acaoModel, 5
arquivo_videoModel, 6
funcionarioModel, 15
log_eventosModel, 16
statusModel, 19
zonaModel, 22

verificarLoginComponent, 20
__construct, 21
run, 21

view
Controller, 9

zonaModel, 21
toArray, 22
validar, 22

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

127

APÊNDICE G – Código fonte de geração do
Banco de Dados

−− phpMyAdmin SQL Dump
−− ve r s i on 3 . 5 . 2 . 2
−− h t t p ://www. phpmyadmin . net
−−
−− Serv idor : 127 . 0 . 0 . 1
−− Tempo de Geracao :
−− Versao do Serv idor : 5 . 5 . 27
−− Versao do PHP: 5 . 4 . 7

SET SQL_MODE="NO_AUTO_VALUE_ON_ZERO" ;
SET time_zone = " +00:00 " ;

/* !40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */ ;
/* !40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */ ;
/* !40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */ ;
/* !40101 SET NAMES u t f 8 */ ;

−−
−− Banco de Dados : ‘ sistema_seguranca ‘
−−

−− −−

−−
−− Estru tura da t a b e l a ‘ acao ‘
−−

CREATE TABLE IF NOT EXISTS ‘ acao ‘ (
‘ codigo ‘ int (11) NOT NULL AUTO_INCREMENT,
‘ de s c r i cao ‘ varchar (45) NOT NULL,

PRIMARY KEY (‘ codigo ‘)
) ENGINE=InnoDB DEFAULT CHARSET=ut f8 AUTO_INCREMENT=6 ;

128 APÊNDICE G. Código fonte de geração do Banco de Dados

−−
−− Extraindo dados da t a b e l a ‘ acao ‘
−−

INSERT INTO ‘ acao ‘ (‘ codigo ‘ , ‘ d e s c r i cao ‘) VALUES
(1 , ’Marcar␣como␣ seguro ’) ,
(2 , ’Marcar␣como␣ a l e r t a ’) ,
(3 , ’Marcar␣como␣ invasao ’) ,
(4 , ’Renomear␣Zona ’) ,
(5 , ’ I n s e r i r ␣Zona ’) ;

−− −−

−−
−− Estru tura da t a b e l a ‘ arquivo_video ‘
−−

CREATE TABLE IF NOT EXISTS ‘ arquivo_video ‘ (
‘ codigo ‘ varchar (24) NOT NULL,
‘nome ‘ varchar (45) NOT NULL,
‘ data ‘ datet ime NOT NULL,
‘ codigo_zona ‘ int (11) NOT NULL,

PRIMARY KEY (‘ codigo ‘) ,
KEY ‘ indice_codigo_zona ‘ (‘ codigo_zona ‘)

) ENGINE=InnoDB DEFAULT CHARSET=ut f8 ;

−− −−

−−
−− Estru tura da t a b e l a ‘ func ionar io ‘
−−

CREATE TABLE IF NOT EXISTS ‘ f unc i ona r i o ‘ (
‘ codigo ‘ int (11) NOT NULL AUTO_INCREMENT,
‘ senha ‘ varchar (45) NOT NULL,
‘nome ‘ varchar (45) NOT NULL,

PRIMARY KEY (‘ codigo ‘)
) ENGINE=InnoDB DEFAULT CHARSET=ut f8 AUTO_INCREMENT=2 ;

129

−−
−− Extraindo dados da t a b e l a ‘ func ionar io ‘
−−

INSERT INTO ‘ f unc i ona r i o ‘ (‘ codigo ‘ , ‘ senha ‘ , ‘nome ‘) VALUES
(111000111 , ’ naopodelogarcomoserver ’ , ’ Server ’) ,
(1 , ’ 21232 f297a57a5a743894a0e4a801fc3 ’ , ’ admin ’) ;

−− −−

−−
−− Estru tura da t a b e l a ‘ log_eventos ‘
−−

CREATE TABLE IF NOT EXISTS ‘ log_eventos ‘ (
‘ codigo ‘ int (11) NOT NULL AUTO_INCREMENT,
‘ codigo_zona ‘ int (11) NOT NULL,
‘ cod igo_func ionar io ‘ int (11) NOT NULL,
‘ codigo_arquivo ‘ varchar (24) DEFAULT NULL,
‘ codigo_acao ‘ int (11) NOT NULL,

PRIMARY KEY (‘ codigo ‘) ,
KEY ‘ indice_codigo_acao ‘ (‘ codigo_acao ‘) ,
KEY ‘ indice_codigo_zona ‘ (‘ codigo_zona ‘) ,
KEY ‘ ind ice_cod igo_func ionar io ‘ (‘ cod igo_func ionar io ‘) ,
KEY ‘ indice_codigo_arquivo ‘ (‘ codigo_arquivo ‘)

) ENGINE=InnoDB DEFAULT CHARSET=ut f8 AUTO_INCREMENT=1 ;

−− −−

−−
−− Estru tura da t a b e l a ‘ s t a tu s ‘
−−

CREATE TABLE IF NOT EXISTS ‘ s tatus ‘ (
‘ codigo ‘ int (11) NOT NULL AUTO_INCREMENT,
‘ de s c r i cao ‘ varchar (45) NOT NULL,

PRIMARY KEY (‘ codigo ‘)
) ENGINE=InnoDB DEFAULT CHARSET=ut f8 AUTO_INCREMENT=4 ;

130 APÊNDICE G. Código fonte de geração do Banco de Dados

−−
−− Extraindo dados da t a b e l a ‘ s t a tu s ‘
−−

INSERT INTO ‘ s tatus ‘ (‘ codigo ‘ , ‘ d e s c r i cao ‘) VALUES
(1 , ’ seguro ’) ,
(2 , ’ a l e r t a ’) ,
(3 , ’ invasao ’) ;

−− −−

−−
−− Estru tura da t a b e l a ‘ zona ‘
−−

CREATE TABLE IF NOT EXISTS ‘ zona ‘ (
‘ codigo ‘ int (11) NOT NULL AUTO_INCREMENT,
‘ codigo_status ‘ int (11) NOT NULL,
‘nome ‘ varchar (45) NOT NULL,

PRIMARY KEY (‘ codigo ‘) ,
KEY ‘ ind ice_codigo_status ‘ (‘ codigo_status ‘)

) ENGINE=InnoDB DEFAULT CHARSET=ut f8 AUTO_INCREMENT=1 ;

−−
−− Res t r i coe s para as t a b e l a s dumpadas
−−

−−
−− Res t r i coe s para a t a b e l a ‘ arquivo_video ‘
−−
ALTER TABLE ‘ arquivo_video ‘

ADD CONSTRAINT ‘ arquivo_video_ibfk_1 ‘ FOREIGN KEY (‘ codigo_zona ‘) REFERENCES ‘ zona ‘ (‘ codigo ‘) ON DELETE NO ACTION ON UPDATE NO ACTION;

−−
−− Res t r i coe s para a t a b e l a ‘ log_eventos ‘
−−
ALTER TABLE ‘ log_eventos ‘

ADD CONSTRAINT ‘ log_eventos_ibfk_1 ‘ FOREIGN KEY (‘ codigo_zona ‘) REFERENCES ‘ zona ‘ (‘ codigo ‘) ON DELETE NO ACTION ON UPDATE NO ACTION,

131

ADD CONSTRAINT ‘ log_eventos_ibfk_4 ‘ FOREIGN KEY (‘ codigo_acao ‘) REFERENCES ‘ acao ‘ (‘ codigo ‘) ON DELETE NO ACTION ON UPDATE NO ACTION,
ADD CONSTRAINT ‘ log_eventos_ibfk_5 ‘ FOREIGN KEY (‘ cod igo_func ionar io ‘) REFERENCES ‘ func i ona r i o ‘ (‘ codigo ‘) ON DELETE NO ACTION ON UPDATE NO ACTION,
ADD CONSTRAINT ‘ log_eventos_ibfk_6 ‘ FOREIGN KEY (‘ codigo_arquivo ‘) REFERENCES ‘ arquivo_video ‘ (‘ codigo ‘) ON DELETE NO ACTION ON UPDATE NO ACTION;

−−
−− Res t r i coe s para a t a b e l a ‘ zona ‘
−−
ALTER TABLE ‘ zona ‘

ADD CONSTRAINT ‘ zona_ibfk_1 ‘ FOREIGN KEY (‘ codigo_status ‘) REFERENCES ‘ status ‘ (‘ codigo ‘) ON DELETE NO ACTION ON UPDATE NO ACTION;

/* !40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT */ ;
/* !40101 SET CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS */ ;
/* !40101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION */ ;

	Folha de rosto
	Resumo
	Abstract
	Lista de ilustrações
	Lista de abreviaturas e siglas
	Sumário
	Introdução
	Estado da Arte
	Requisitos de projeto
	Metodologia de projeto
	Prototipagem rápida e virtual
	Projeto exploratório

	Modelo de referência

	Design do sistema
	Hardware
	Raspberry Pi

	Software
	ROS

	Aquisição de imagens
	Resolução da imagem
	Cadência

	Sistema de segurança
	As zonas do sistema
	Os estados do sistema
	Os atributos do sistema

	Projeto
	Estrutura do sistema
	Desempenho esperado

	Resultados
	Implementação do sistema completo
	Teste 1
	Teste 2

	Discussão dos resultados
	Raspberry Pi
	Funcionamento da arquitetura
	Algoritmo de detecção de invasão
	Arquitetura Mutli-agente
	Flexibilidade
	Agentes leves
	Controle distribuído
	Segurança da rede
	Velocidade de transmissão de dados
	PHP

	Conclusão
	Trabalhos futuros
	Estrutura multi-agente
	Funcionalidades do sistema

	Referências
	Apêndices
	Diagramas do sistema ROS
	Casos de uso
	Especificação de casos de uso
	Diagrama de casos de uso
	Identificação dos atores
	Identificação dos casos de uso
	Detalhamento dos casos de uso
	UC-01 Captar imagem
	UC-02 Publicar imagem
	UC-03 Subscrever imagem
	UC-04 Analisar imagem
	UC-05 Publicar status
	UC-06 Subscrever status
	UC-07 Receber status PHP
	UC-08 Atualizar status
	UC-09 Salvar imagem
	UC-10 Abrir imagem
	UC-11 Transmitir imagem

	Diagrama de sequência

	Diagramas do sistema PHP
	Casos de uso
	Especificação de casos de uso
	Diagrama de casos de uso
	Identificação dos atores
	Identificação dos casos de uso
	Detalhamento dos casos de uso
	UC-01 Fazer Login
	UC-02 Fazer Logout
	UC-03 Renomear Zona
	UC-04 Visualizar Zona
	UC-05 Listar Log de Eventos
	UC-06 Fazer Download
	UC-07 Visualizar Sistema
	UC-08 Atualizar Status da Zona PHP
	UC-09 Enviar Imagem
	UC-10 Verificar dados de Login
	UC-11 Registrar Evento
	UC-12 Carregar Zonas

	Diagramas de sequência
	Diagrama de classes
	Diagrama entidade relação

	Descrição do sistema PHP
	Framework
	Models
	Views
	Controllers
	Components
	Server
	carregarZonas($params)
	enviarImagem($params)
	registrarEvento($codigo_zona, $codigo_arquivo, $codigo_acao, , $codigo_funcionario, $conexao)
	verificarLogin($usuario, $senha)

	Algoritmos para detecção de invasão
	Comparação de frames subsequentes
	Comparação com o primeiro frame
	Contornos de imagens

	Documentação projeto ROS
	Documentação projeto PHP
	Código fonte de geração do Banco de Dados

