Airton Carlos Nunes Raimundo
Luiz Fernando Yamaoka

Agentes Autonomos para Seguranca
Residencial

Brasil
2013

Airton Carlos Nunes Raimundo
Luiz Fernando Yamaoka

Agentes Autonomos para Seguranca Residencial

Trabalho de formatura

Universidade de Sao Paulo
Escola Politécnica

Departamento de Engenharia Mecatronica e de Sistemas Mecéanicos

Orientador: Prof. Dr. José Reinaldo Silva

Coorientador: Prof. Marco Antonio Poli Jr

Brasil

2013

Nunes Raimundo, Airton Carlos; Yamaoka, Luiz Fernando
Agentes Autonomos para Seguranca Residencial/ Airton Carlos Nunes Rai-

mundo e Luiz Fernando Yamaoka. — Brasil, 2013-
131 p. : il. (algumas color.) ; 30 cm.

Trabalho de Formatura — Universidade de Sao Paulo

Escola Politécnica
Departamento de Engenharia Mecatronica e de Sistemas Mecanicos, 2013.

1. Edificios residenciais (Seguranga). 2. Sistemas autonomos. 3. Arquitetura e
organizacao de computadores. I. Universidade de Sdo Paulo. Escola Politécnica.
Departamento de Engenharia Mecatronica e de Sistemas Mecénicos

Resumo

A evolucao dos sistemas automatizados aponta hoje para uma tendéncia a utilizar sistemas mais
pervasivos e distribuidos, eventualmente portadores de algum nivel de inteligéncia, conferindo
aos respectivos sistemas uma abordagem cognitiva. Os sistemas dométicos em especial partilham
desta tendéncia, mas estdo ainda muito atrelados, no que tange ao desenvolvimento de sistemas
mecatronicos, a uma dependéncia dos sistemas industriais correspondentes. Um dos problemas
acarretado por isso é a falta de flexibilidade, especialmente dos sistemas de vigilancia. Neste
caso o ideal seria ter sistemas distribuidos e auténomos que pudessem ser colocados em qual-
quer ponto do ambiente, sem a necessidade de instalacdo sofisticada causando mudancas - as
vezes drasticas - neste ambiente legado. Naturalmente estes elementos distribuidos poderiam ser
mapeados compondo um sistema integrado regido por um servidor. Neste trabalho desenvolve-
remos um projeto de sistema mecatrénico que na verdade é um sistema composto de agentes
autonomos independentes funcionando cooperativamente e coordenados por um sistema, central
que implementaria as fungdes coordenadas de vigilancia (como "seguir'um alvo mével). A ar-
quitetura distribuida é expansivel e pode ser futuramente utilizada, inclusive em um sistema
multi-agente, e serd baseada em elementos auténomos que usam o Robot Operating System
(ROS) como base de processamento, faremos ainda as tomadas do ambiente alvo com diferen-
tes niveis de resolucdo, dependendo do estado do ambiente. Isto permite uma maior agilidade
e a concentracao do sistema supervisério somente em dados que realmente interessam para o
processo de vigilancia, em um determinado intervalo de tempo. Neste documento mostraremos
a fase inicial do desenvolvimento, seguindo o método de prototipagem rapida e virtual (e nao
um processo de eliciagdo e andlise de requisitos convencional), de modo a se adaptar ao atraso
ocorrido no inicio do projeto. Para o futuro (segundo semestre) ficardo o desenvolvimento de
alguns protétipos do agente independente, seu controle e processamento local e a integracao
com o software supervisério do servidor. Uma prova de conceito serd desenvolvida baseada na

implementacdo de um nimero reduzido de agentes.

Palavras-chaves: Sistema de seguranga, agentes independentes, sistema distribuido, multi-

agente

Abstract

Nowadays the evolution of automated systems points to a tendency to use more pervasive and
distributed systems, possibly containing some level of intelligence, giving the respective systems
a cognitive approach. Home automation systems, in particular, share this trend, but are still
very linked to the dependence of the corresponding industrial systems, regarding the develop-
ment of mechatronic systems. One of the problems entailed by this is the lack of flexibility,
especially surveillance systems. In this case the ideal would be to have autonomous distributed
systems, that could be placed anywhere in the room, without the need of sophisticated in-
stallation processes causing change in the environmente, sometimes dramatic. Naturally these
distributed elements could be mapped composing an integrated system governed by a server.
In this paper we develop a project of mechatronic system which is actually a system composed
of autonomous agents working independently, but cooperatively and coordinated by a central
system that would implement the coordinated functions of surveillance (f.i. "follow" a moving
target). The distributed architecture is scalable and can be used in the future, even in a multi-
agent system, and will be based on autonomous elements that use the Robot Operating System
(ROS) as a processing base, the pictures of the environmente can be taken with different levels
of resolution depending on the state of the environment. This benefits the system with a greater
agility and the supervisory system can be concentrated on data that really matter to the vigi-
lance procedure in a given time interval. This document show the initial phase of development,
following the method of rapid prototyping and virtual (and not a process of elicitation and con-
ventional analysis of requirements), in order to adapt to delay in the start of the project. In the
future (second half of the year) some prototypes of the independent agent will be developted, its
control and local processing and integration with supervisory software server. A proof of concept

will be developed based on the implementation of a small number of agents.

Keywords: Security system, independent agents, distributed system, multi-agent

Lista de ilustracoes

Figura 1 — Diagrama do sistema multi-agente modificado 21
Figura 2 — Sistema client e serviceo oL 25
Figura 3 — Sistema publisher e subscriber 00000 25
Figura 4 — Captacao de imagens em cadéncia de 2fps 27
Figura 5 — Captacao de imagens em cadéncia de 4fps 28
Figura 6 — Captacao de imagens em cadéncia de 6fps 28
Figura 7 — Exemplo de divisdao do ambiente em zonas de seguranca 29
Figura 8 — Diagrama de transicao de estados do sistema 29

Figura 9 — Relacao das variaveis do sistema com o estado de seguranca do sistema 30

Figura 10 —Diagrama do funcionamento do sistema 31
Figura 11 —Sistema ROS completo 35
Figura 12 —Diagrama com a estrutura do sistema no teste 1 36
Figura 13 —Diagrama com a estrutura do sistema no teste 2 36
Figura 14 —Diagrama de casos de uso do sistema ROS 50
Figura 15 —Diagrama de sequéncia do caso analisar imagem 55
Figura 16 —Diagrama de sequéncia do caso enviar transmitir imagem 55
Figura 17 —Diagrama de casos de uso do sistema PHP 58
Figura 18 —Diagrama de sequéncia do caso carregar zonas 63
Figura 19 —Diagrama de sequéncia do caso fazer download 64
Figura 20 —Diagrama de sequéncia do caso fazer login 64
Figura 21 —Diagrama de sequéncia do caso enviar imagem 65
Figura 22 —Diagrama de classes da Framework 66
Figura 23 —Diagrama de classes da aplicagdo 67
Figura 24 —Diagrama entidade relacao 68
Figura 25 —View da pagina de Login 70
Figura 26 —View da pagina do sistema 71
Figura 27 —Imagem original Lo 75

Figura 28 —Resultado da comparacao de frames subsequentes a partir da imagem
original da figura 27 o 76

Figura 29 —Resultado da comparacao da imagem original da figura 27 com o pri-
meiro frame 7

Figura 30 —Imagem original Lo 7

Figura 31 —Resultado da comparacao da imagem original da figura 30 com o pri-
meiro frame 78
Figura 32 —Primeiro resultado do algoritmo para encontrar os contornos de imagens 78

Figura 33 —Segundo resultado do algoritmo para encontrar os contornos de imagens 79

Lista de abreviaturas e siglas

AVAC Aquecimento, Ventilacao e Ar Condicionado
OpenCV Open Source Computer Vision Library
ROS Robot Operating System

VPN Virtual Private Network

Sumario

Introducao L 15
Estadoda Arte e e e e e 17
Requisitos de projeto e e e e e e e 19
3.1 Metodologia de projeto 19
3.1.1 Prototipagem rapida e virtual 19
3.1.2 Projeto exploratorioo 19
3.2 Modelo de referénciao 20
Design dosistema e 23
4.1 Hardware 23
4.1.1 Raspberry Pi 23
4.2 Software e 24
421 ROS e 24
4.3 Aquisicao de imagens 26
4.3.1 Resolucao da imagem L 26
4.3.2 Cadéncia 27
4.4 Sistema de segurancao 28
4.41 Aszonasdosistema 29
4.4.2 Osestados do sistema 29
4.4.3 Os atributos do sistema oo 30
Projeto e e e e e e e e e e e e e 31
5.1 Estrutura do sistema oL 31
5.2 Desempenho esperado Lo 32
Resultados e e e e e e 35
6.1 Implementagao do sistema completo. 35
6.1.1 Teste 1. 35
6.1.2 Teste 2. 36
6.2 Discussao dos resultados Lo 37
6.2.1 Raspberry Pi 37
6.2.2 Funcionamento da arquiteturao 37
6.2.3 Algoritmo de deteccao de invasao 37
6.2.4 Arquitetura Mutli-agenteo 38

6.2.5 Flexibilidade 38

6.2.6 Agentesleves 38

6.2.7 Controle distribuido 0o 39

6.2.8 Seguranca darede 39

6.2.9 Velocidade de transmissdao dedados 39

6.2.10 PHP 40

7 Conclusd@o o e e e e e e e e e e e e e 41
7.1 Trabalhos futuros 42
7.1.1 Estrutura multi-agenteo o000 42

7.1.2 Funcionalidades do sistema 43
Referéncias e e e e e e e e e 45
Apéndices 47
APENDICE A Diagramasdosistema ROS. 49
Al Casosde uso. o 49
A.1.1 Especificacdo de casos deuso L. 49

A.1.1.1 Diagrama de casosdeuso 49

A.1.1.2 Identificacao dos atores 49

A.1.1.3 Identificacdo dos casos deuso 49

A.1.1.4 Detalhamento dos casos deuso 51

A.2 Diagrama de sequéncia 54
APENDICE B Diagramas dosistema PHP 57
Bl Casosdeuso. 57
B.1.1 Especificacdo de casos deuso 57

B.1.1.1 Diagrama de casosdeuso o7

B.1.1.2 Identificacdo dos atores o7

B.1.1.3 Identificagdo dos casos deuso 57

B.1.1.4 Detalhamento dos casos deuso 59

B.2 Diagramas de sequéncia 63
B.3 Diagrama declasses. 65
B.4 Diagrama entidade relacaoo Lo 65
APENDICE C Descricio dosistema PHP 69
C.0.1 Framework 69

C.0.2 Models 70

C.0.3 Views e 70

C.0.4 Controllers 71

C.0.5 Components 72

C.0.6 Server 72
APENDICE D Algoritmos para deteccdo de invasdo 75
D.1 Comparagao de frames subsequentes 75
D.2 Comparacao com o primeiro frame 76
D.3 Contornos de imagens 7
APENDICE E Documentacdo projeto ROS 81
APENDICE F Documentacdo projeto PHP 95

APENDICE G Cédigo fonte de geracdo do Banco de Dados. 127

15

1 Introducao

Os sistemas de seguranga para domética geralmente apresentam uma arquitetura
fixa, embora distribuida, onde sensores e cameras sao colocados em postos fixos. Isso depoe
contra o proprio requisito de seguranca, dado que é possivel ter conhecimento prévio da

colocacao dos sensores e cameras, na maior parte dos casos.

Outro problema é que os sistema de domoética atualmente sdao isolados e nao se
intercomunicam. Por exemplo o sistema de seguranca observado em (VERISURE, 2013)
nao permite a integracao com outros sistemas presentes na residéncia. Essa caracteristica
dos sistemas de seguranca domética atuais restringe que novas funcionalidades possam ser
implementadas e sistemas mais completos possam ser criados. Além disso, nos sistemas de
seguranca atuais também nao ha a possibilidade de expansao em escala como observado
em (VERISURE, 2013) h& uma limitacdo de 32 detectores, em (SMSOLUTION, 2013)
existe uma limitagdo de 16 cameras e em (SU; LEE; WU, 2006), onde foi desenvolvido
um sistema de home automation a partir de um microcontrolador, que possui apenas
6 entradas para receber sinais dos sensores e 4 saidas, que controlam os aparelhos. Se
houver necessidade de expansao do sistema, esta é geralmente feita a custa de retrabalho

e adaptacoes significativas no sistema original — embora ja existam algumas propostas de
sistema ja modularizados (GOMASA, 2011).

Outra caracteristica é que os diversos sistemas de seguranca do mercado podem
utilizar diversos sensores, como sensores de contato, de presenca, infravermelho, de movi-
mento, cdmeras e também atuadores como luzes, alto-falantes e até robos (HSU; YANG;
WU, 2009), (SONG et al., 2009), (LUO, 2007). No entanto, um fato em comum deles é que
possuem uma central de monitoramento e/ou central de controle. Com isso, se esta central
possui algum problema o sistema inteiro perde sua funcionalidade e, portanto, o ambiente
se torna inseguro. Por isso, objetiva-se neste projeto desenvolver um sistema de agentes
distribuidos, ou seja, um sistema de agentes que funcionem independentemente. Desta
forma, nao haveria uma central de controle e se um agente é, por exemplo, danificado, os

outros agentes continuam operando sem problemas.

Locais publicos possuem ainda requisitos préprios quando se trata de sistemas de
seguranca porque, diferente de um ambiente privado, um ladrao tem o total acesso ao
ambiente do furto quantas vezes ele desejar. Isso permite que planos complexos sejam
arquitetados para vencer um sistema de seguranca convencional. Partindo dessa particu-
laridade, esse trabalho propoe o desenvolvimento um sistema de seguranca flexivel contra
intrusao que permita a realocagao de seus sensores a qualquer momento. Outro exemplo,

no qual este problema é abordado seria um condominio de casas, onde o condominio ofe-

16 Capitulo 1. Introducio

rega um sistema de seguranca interno para as casas. No entanto, cada casa possui suas
particularidades. Deste modo, algumas casas poderiam optar pela instalacao das cameras
enquanto outros nao por questoes de privacidade; a disposicao dos méveis e a construgao
das casas sao diferentes em cada casa, entdo as cameras precisam ser dispostas em lo-
cais diferentes; apds alguns meses de teste, o usuario pode nao gostar do sistema e optar
por retira-lo de sua residéncia; entre outros exemplos. Em todos estes casos, um sistema

flexivel seria muito util e facilitaria a vida dos usudrios.

Neste trabalho investigaremos a possibilidade de implementacao de um sistema
de seguranga com uma arquitetura multi-agente flexivel, que de fato pode ser usada em
varios sistemas de automacao, seja em domotica ou em outros ramos de aplicacdo. Como
demonstrado em (ABREU et al., 2000) em uma aplicagdo para monitoramento de trafego

de veiculos em uma rodovia.

O sistema proposto pode ser caracterizado como uma arquitetura de duas camadas
para um sistema multi-agente (ndo-inteligente, no caso de estudo proposto), colaborativo,
flexivel e aberta — onde novos elementos podem entrar a qualquer momento, bastando ter
o seu identificador registrado no banco de dados, juntamente com a sua posicao atual.
Isso permite que a qualquer momento a posi¢ao dos elementos sensor/camera possam
ser alterados e atualizados novamente no banco de dados sem nenhuma alteracao na

funcionalidade ou na programacao dos processos do sistema.

Para garantir a generalidade do sistema e sua possivel aplicacao a outros aplicati-
vos de domotica ou de automacao em geral, optou-se por ter dispositivos genéricos, que
seguem a atual tendéncia de modularizacao: cada agente sera entao implementado em
um Raspberry Pi e conectados sem fio a um servidor (onde fica a camada de processa-
mento principal, onde eventualmente se incluiria inteligéncia); em cada agente tem seu

processamento local baseado em ROS (Robotic Operating System).

Apesar de ter como base uma implementacao especifica para sistemas domoti-
cos 0 objetivo principal é na verdade discutir e investigar a arquitetura proposta e sua

aplicabilidade a outros sistemas similares.

17

2 Estado da Arte

Como dito anteriormente ja existem no mercado varios sistemas de domética, que,
no entanto, possuem diversas limitagoes referentes a intercomunicagao com sistemas com
fungoes diferentes (VERISURE, 2013) e também a impossibilidade de expansao em escala

no numero de sensores, cameras, detectores e outros (SMSOLUTION, 2013).

Para solucionar esses problemas supracitados uma possibilidade seria a implanta-
¢ao de sistemas multi-agentes como mostrado em (ABREU et al., 2000) no desenvolvi-
mento de um sistema multi-agente para monitorar o trafego de veiculos em uma rodovia.
Este trabalho foi realizado por um consércio dos laboratérios ADDETTTI (Lisboa, Portu-
gal), EPFL (Lausane, Suiga), LEP (Paris, Franca) e UCL (Louvain, Bélgica) e mostrou a
possibilidade de expansao em escopo, possibilidade de adicionar novas funcionalidades ao
sistema; e também a possibilidade de expansao em escala com a adi¢ao de mais agentes
ao sistema. Contudo, apesar deste sistema implementar um sistema com uma arquite-
tura multi-agente como também ¢é objetivado aqui, o projeto em questao possui requisitos

diferentes dos nossos, principalmente requisitos referentes ao sistema de seguranca.

No ambito da seguranca residencial, um grande problema existente é a central de
comando, que é o ponto fraco do sistema, pois uma vez desativada a central de comando,
o sistema inteiro perde a sua funcionalidade. Por isso, uma solugao para este problema é
a implementacao de sistemas multi-agentes com agentes distribuidos como demonstrado
em (SHARPLES; CALLAGHAN; CLARKE, 1999). Neste sistema os agentes possuem
sua propria inteligéncia e, portanto, tem autonomia para funcionar sozinho, mas também

podem realizar tarefas em conjunto.

Outros trabalhos foram realizados na area do monitoramento de trafego e também
mostraram sistemas multi-agentes com agentes possuindo inteligéncia artificial (VAL-
LEJO et al., 2011). Neste trabalho cada agente é um computador normal e, por isso, é
mostrado que cada gente possui uma capacidade de processamento muito alta. No en-
tanto, o sistema perde em flexibilidade, ou seja, na possibilidade de facil realocacao dos
agentes e posicionamento em locais sem fontes de energia, como sera devera ser plausivel

para um sistema de seguranca.

19

3 Requisitos de projeto

Este projeto nao foi realizado através metodologia convencional, onde os requisitos
funcionais e nao funcionais devem primeiro ser definidos e posteriormente da anélise des-
tes. Ao invés disso, este projeto foi desenvolvido com base na aplicagdo da metodologia de
prototipagem réapida e virtual (segdo 3.1.1); e de um projeto exploratério (segao 3.1.2). Em
termos metodolégicos e de projeto isto significa que o projeto ja partiu de um modelo de
sistema de vigilancia baseado em agentes canonicos (se¢ao 3.2). Esta estratégia permitiu
trabalhar diretamente na prova de conceito do modelo proposto estudando a viabilidade

da arquitetura.

3.1 Metodologia de projeto

3.1.1 Prototipagem rapida e virtual

Prototipagem rapida e virtual é uma metodologia agil de projeto que possui foco
em atingir rapidamente o produto final para submeté-lo a testes. Essa metodologia é
empregada em projetos exploratorios e que podem ter alguma restricao tecnologica para

serem realizados.

Por esse motivo e diferentemente do projeto de metodologia convencional, nao
tem um foco muito grande na definicdo dos requisitos de projeto. Por isso, é necessaria a
defini¢do de um modelo de referéncia (se¢ao 3.2), que servird como base para o desenvol-
vimento do projeto. Nele serao definidos detalhes de como o projeto devera ser apesar de

nao haver um estudo de requisitos.

3.1.2 Projeto exploratorio

Um projeto exploratério visa a pesquisa e desenvolvimento de um conceito ou
uma ideia que é possivel na teoria mas que pode possuir uma barreira tecnoldgica para
ser realizado. Com a implementacao desta ideia, sera testada se esta é realmente plausivel

de ser aplicada na pratica.

Por isso, é possivel que a tecnologia que dispomos hoje nao seja suficiente para
criarmos um sistema de seguranca expansivel, multi-agente e flexivel, no entanto, novas

aplicagoes para a tecnologia testada podem surgir desse trabalho.

20 Capitulo 3. Requisitos de projeto

3.2 Modelo de referéncia

O modelo de referéncia é uma solugao abstrata para uma classe de problemas.
Assim esta solucao omite os detalhes de implementacdo de uma instancia particular do

problema para se concentrar nos aspectos gerais.

O modelo de referéncia aqui definido tem como base as ideologias do Prof. Dr. José
Reinaldo Silva e do Prof. Marco Poli. Ele é definido por uma arquitetura multi-agente
onde a distribuicao de tarefas é baseada na arquitetura e em uma definicdo funcional
do papel destes agentes. Assim, o modelo explorado neste trabalho nao é baseado em
agentes inteligentes, e portanto estes agentes nao usam a troca de mensagem para definir
o que fazer. Em carater especial uma situacao de emergéncia foi considerada onde a
coordenacao local de atividades pode ser repassada a outro agente, quando o coordenador
estiver impossibilitado ou estiver sendo atacado. Mesmo nesse caso a decisao é unilateral

do agente coordenador.

No caso geral, um sistema multi-agente classico é um sistema formado com base
em uma arquitetura de agentes autéonomos, que possuem certa inteligéncia (SHARPLES;
CALLAGHAN; CLARKE, 1999), (VALLEJO et al., 2011) para execucao de tarefas vi-
sando objetivos especificos. Uma decorréncia direta do carater autonomo é que o nao
funcionamento de um agente nao impede outros agentes de efetuarem suas atividades.
Logo, os agentes estariam todos em uma mesma camada de nivel. Desta maneira, o sis-
tema seria facilmente expansivel, pois ndo existe uma hierarquia entre os agentes (neste

nivel).

Além disso, existe o conceito por trds da arquitetura que um agente ativo (KU-
BERA; MATHIEU; PICAULT, 2010) nao precisa ser capaz de realizar toda a inteligéncia
do sistema, mas que um comportamento global inteligente pode ser obtido através da

soma das atividade individual e independente de cada um dos agentes.

No entanto, o modelo de referéncia utilizado define uma arquitetura multi-agente
modificada para um sistema em duas camadas, onde a camada superior € um supervisor
rodando sobre um sistema de informacao e a segunda camada é composta pelos demais
agentes, como pode ser observado na Figura 1. Neste sistema o agente superior, que é o
sistema de informagao nao sabe da existéncia dos agentes do sistema multi-agente, mas os
agentes da segunda camada conhecem o endereco do sistema para que possam estabelecer
uma comunicacao com o servidor, estabelecendo um comunicacao “one way”, o que reduz

ainda mais a necessidade de comunicagao.

Outra ideia do modelo de referéncia é que o sistema seja aberto, e altamente
configuravel e modificavel, ou seja, os agentes devem ser implementados em um hardware
que permita a facil realocacao dos agentes, e o sistema global deve admitir sempre a

entrada de novos agentes ou a retirada de algum.

3.2. Modelo de referéncia

21

Servidor

Sistema Multi-agente

Figura 1 — Diagrama do sistema multi-agente modificado

23

4 Design do sistema

Para que o sistema desenvolvido atenda ao modelo de referéncia, algumas espe-
cificagoes foram realizadas para este projeto nos seguintes pontos: Hardware (segao 4.1),

software (se¢do 4.2), aquisi¢do de imagens (segdo 4.3) e sistema de seguranga (secao 4.4)

4.1 Hardware

Com o intuito de montar um agente para a aquisicdo das imagens das cameras
e realizar possivelmente um tratamento inicial da imagens, diversos hardwares poderiam

ser utilizados, como por exemplo:

e Desktop
e Laptop
e Arduino

e Raspberry Pi

Desktops e Laptops apresentam grande poder de processamento e seriam 6timos
para a construcao de agentes independentes, que fariam todo o processamento de imagens
neles mesmo, mas nao seriam uma boa opg¢ao para este projeto, pois ¢ objetivo deste
projeto construir agentes pequenos e de facil realocacao. Conta ainda contra estas opgoes

o alto custo do equipamento.

O Arduino seria uma 6tima solugao para o desenvolvimento de um agente pequeno,
leve e muito flexivel, no entanto, seu poder de processamento é muito baixo (o Arduino
Uno, por exemplo, conta com apenas 2Kb de meméria RAM estatica) e seria muito dificil

realizar um processamento da imagem local.

Uma opc¢ao para suprir as necessidades de realizar um agente flexivel com poder
de processamento razoavel seria o Raspberry Pi. Mais detalhes sobre esse hardware sao

dados na secao seguinte.

4.1.1 Raspberry Pi

O Raspberry Pi é um computador de baixo custo desenvolvido pela Raspberry Pi
Foundation no Reino Unido com o intuito de promover o ensino de ciéncia da computagao
em escolas. O O modelo B deste computador possui as dimensoes de 85.60mm x 53.98mm,

duas portas USB, adaptador Ethernet para conexao a rede, fonte de energia via MicroUSB,

24 Capitulo 4. Design do sistema

512Mb de memoria RAM e outros. Além disso, pode rodar uma versao adaptada da

distribuicao para Linux Debian, o Raspbian.
No Brasil, ele pode ser adquirido a um custo de R$150,00 por unidade.

Devido as suas pequenas dimensoes pode ser utilizado neste projeto para con-
trolar a camera, adquirir as imagens e realizar o tratamento inicial destas. Deste modo,
poderiamos desenvolver um sistema pequeno, moével e flexivel, que poderd ser movido e

reinstalado pelo usuario sem perda de funcionalidades e qualidade.

4.2 Software

Para atender aos requisitos poderiamos desenvolver uma linguagem proépria de
programagao, que possuiria uma adaptabilidade imensa, pois seria desenvolvida por nés
mesmos. No entanto, seu desenvolvimento seria muito trabalhoso. Uma segunda alterna-
tiva seria a utilizagao de frameworks ja existentes, que proporcionariam uma solu¢ao mais
robusta, pois sao desenvolvidas por especialistas ha anos. Duas opc¢oes de frameworks ja

existentes sao Erlang e ROS (Robot Operating System).

Erlang é uma linguagem de programagcao a principio desenvolvida pela empresa
Ericsson, mas que agora é disponivel open source. Esta é uma linguagem muito robusta,

com fungoes altamente desenvolvidas.

Apesar do Erlang ser uma boa alternativa para este projeto optaremos pelo ROS.
ROS nao possui uma gama de funcionalidades como o Erlang, no entanto, possui um férum
altamente ativo e prontamente disposto a ajudar, fator que ajudara no desenvolvimento

do projeto.

421 ROS

ROS é uma framework de software para o desenvolvimento de software para robos,
no entanto, possui as ferramentas necessarias para o desenvolvimento deste projeto, como
transmissao de mensagens, captura de imagens da webcam e outros, além de possuir
ferramentas de robotica, que poderao ser utilizadas futuramente para o desenvolvimento

e aperfeicoamento do projeto.

Esta framework funciona com uma arquitetura, que possui quatro tipos diferentes

de agentes:

e Service
e Client

e Publisher

4.2. Software 25

e Subscriber

Estes agentes funcionam pareados. O agente service trabalha em conjunto com o

agente client, e o publisher com o subscriber.

Como pode ser observado na figura abaixo, os agentes service e client funcionam
como um sistema de pergunta e resposta. O agente client pergunta ao agente service e
obtém a resposta deste. Deste modo, varios clientes podem interagir com o mesmo servigo

e um unico cliente também pode interagir com multiplos servigos.

Service

/4N

Client 1 Client 2

Figura 2 — Sistema client e service

Os agentes publisher e subscriber trabalham diferentemente. O agente publisher
envia uma mensagem constantemente: um feed de mensagens, e o subscriber "ouve'este
feed de mensagens. Assim sendo, varios subscribers podem aderir ao mesmo feed de um pu-
blisher e, por exemplo, realizar tarefas diferentes com este feed. Por exemplo, um publisher
envia a imagem da sua camera em um feed e ha um subscriber detectando movimento e
outro subscriber realizando o reconhecimento de faces. Este modo de funcionamento pode

ser observado na figura abaixo.

Publisher

Subscriber 1

|

<—— Subscriber 2

- - — - — — - =

Figura 3 — Sistema publisher e subscriber

26 Capitulo 4. Design do sistema

Com estes agentes é possivel desenvolver o sistema expansivel desejado, pois po-
deremos adicionar novos subscribers para realizar tarefas diferentes, aumentando as fun-
cionalidades do projeto, assim como novas cameras gerando novos feeds de mensagens,

que serao aderidos por outros subscribers aumentando a escala do projeto.

No inicio do desenvolvimento do ROS, o sistema deveria conter sempre um tnico
nd master para que o sistema pudesse funcionar. Deste modo, nao seria possivel desen-
volver um sistema de agentes distribuidos, pois sem a existéncia do n6 master, o sistema
pararia de funcionar. No entanto, foram desenvolvidas recentemente solug¢oes multi-master
para sistemas ROS, portanto, este problema pode ser sanado e um sistema distribuido

construido.

4.3 Aquisicao de imagens

Para definir as 2 variaveis na aquisicao das imagens: resolucao e cadéncia, foram
realizados alguns testes e comparagoes. Para estes testes foi utilizada a camera embutida

do laptop Asus U46E. Esta é uma webcam de resolugao maxima de 0,3Mp.

4.3.1 Resolucao da imagem

Para realizar a selecao da resolu¢ao da imagem adquirida, foi realizado um teste

analisando a mesma imagem em diversas resolugoes.

Para este teste utilizamos uma imagem em tamanho 4x3, pois este é o formato da
imagem fornecida por grande parte das webcams atuais. Deste modo analisamos a mesma
imagem de um corredor com uma pessoa em primeiro plano nas seguintes resolugoes:
240x320, 360x480 e 480x640.

Observando as imagens obtidas, pudemos observar que a imagem com menor re-
solucdo nao apresentara uma resolucao minima suficiente para processa-la e reconhecer
uma intrusao de uma pessoa. Por exemplo, sera reconhecer movimento de pessoas fora do
primeiro plano, por isso acredita-se que uma imagem de resolugao 320x240 nao apresente

0s requisitos necessarios para o reconhecimento de intrusoes.

Analisando a imagem de resolucao 480x360 ja apresenta uma resolucao suficiente
para reconhecer a intrusao de pessoas em pelo menos primeiro e segundo plano. Natural-
mente um movimento muito distante sera muito dificil de reconhecer, mas realizar este
reconhecimento seria necessario aumentar consideravelmente a resolucao da imagem e,

consequentemente, sobrecarregar a rede com a transmissao desses dados.

No entanto, para realizar processamentos mais complexos do que o reconhecimento
de intrusao, como o reconhecimento de faces, seria necessario uma resolu¢do maior como,

por exemplo a de 640x480.

4.8. Aquisi¢do de imagens 27

Para evitar o sobrecarregamento desnecessario da rede, uma solucao viavel seria
o envio de imagens com resolucao 480x360 enquanto nao houvesse reconhecimento de
intrusoes e a partir do momento que um intruso fosse reconhecido, a resolucao da imagem
adquirida aumentasse para 640x480 ou superior para que os processamentos complexos

sejam realizados.

4.3.2 Cadéncia

Para a filmagem e projecao de filmes em cinema a cadéncia padrao desde a década
de 20 é de 24fps (BROWNLOW, 1980), portanto, esta frequéncia de quadros oferece
uma qualidade visual muito boa e continua. Para o desenvolvimento de um sistema de
seguranga as imagens seriam captadas idealmente em uma frequéncia que oferecesse uma
imagem continua, no entanto, com o intuito de nao sobrecarregar a rede com a transmissao
de dados, utilizaremos uma cadéncia menor, mas que nao comprometa a seguranca do local

em questao, ou seja, que nao perca informagdes importantes.

Para a escolha da cadéncia foram realizados trés testes: a 2fps, 4fps e 6fps. Neste
teste uma pessoa passou caminhando normalmente a cerca de meio metro de distancia da

camera. Com isso pode ser analisado em quantos frames a pessoa seria captada.

O resultado destes testes pode ser observado nas figuras 4, 5 e 6.

Figura 4 — Captacao de imagens em cadéncia de 2fps

Como observado nos testes, a pessoa pode ser observada em 2 frames na cadéncia

de 2fps, em 4 frames na cadéncia de 4fps e em 7 frames na cadéncia de 6fps.

Dois pontos podem e devem ser citados aqui. Primeiramente as cAmeras de segu-
ranca geralmente sao fixadas em locais altos e, portanto, dificilmente uma pessoa passaria
a uma distancia de meio metro da camera. Por estar mais distante da camera, em uma
sequéncia de imagens captada com a mesma cadéncia, a pessoa apareceria em mais fra-
mes do que nos testes realizados. O segundo ponto a ser levado em consideragao é que o
primeiro objetivo a ser atendido é o reconhecimento da presenca de uma pessoa no local,

portanto, nao é necessario que ela seja captada em diversos frames.

28 Capitulo 4. Design do sistema

Figura 6 — Captacao de imagens em cadéncia de 6fps

Considerando que um invasor poderia passar pelo recinto em alta velocidades e
que o sistema de seguranga precisa reconhecer a presenca de todos os que passam em seu
campo de visao, acredita-se que a cadéncia de 6fps é mais adequada para o projeto para

que este também contenha uma certa margem de seguranca.

Contudo, assim como ocorre na resolugao da imagem, que pode ser aumentada
quando um invasor é reconhecido, a cadéncia também pode ser elevada para aumentar a

chance de obter um quadro com uma imagem clara.

4.4 Sistema de seguranca

Ao falar sobre o sistema de seguranca em si, foram realizadas as seguintes especi-

ficacOes com referéncia ao ambiente a ser monitorado.

4.4. Sistema de sequranga 29

4.4.1 As zonas do sistema

Com a func¢ao de tornar precisa a a¢ao preventiva quando esta for acionada é 1til

dividir o ambiente monitorado em zonas de seguranca, como no esquema da figura 7.

‘ Ameaca de Invasdo

Figura 7 — Exemplo de divisao do ambiente em zonas de seguranca

4.42 Qs estados do sistema

Um sistema de seguranga possui como produto de seu funcionamento um estado
que diz se o ambiente esta seguro ou se alguma acdo deve ser tomada para garantir a

seguranga. Por exemplo:

e Seguro

e Ameaga de invasao

e Invasado

O sistema opera normalmente quando em estado seguro, verificando todas as va-
riaveis periodicamente para validar esse estado, caso algo saia do normal o sistema pode
passar para os estados ameaca de invasao ou invasao onde devera encaminhar uma men-

sagem de alerta. Um diagrama destas transagoes pode ser observado na figura 8.

| Ameaca de Invasdo ‘

Figura 8 — Diagrama de transicao de estados do sistema

30 Capitulo 4. Design do sistema

4.4.3 Qs atributos do sistema

Um conjunto de variaveis internas e externas sera utilizado para se determinar o

estado de seguranca do sistema.

Sensores de movimento, cameras de vigilancia e sensores luminosos podem ser

usados para captar informagoes do ambiente e sao exemplos de variaveis externas.

Dia da semana e hora local sdo variaveis que podem ser monitoradas sem a neces-

sidade de se instalar sensores no ambiente e sao exemplos de variaveis internas.

A relacao entre estes atributos do sistema com o estado de segurancga do sistema

pode ser observado na imagem 9

_\
./ ° \
.

Figura 9 — Relacao das variaveis do sistema com o estado de seguranca do sistema

Uma vez que o sistema entre nos estados Ameaca de Invasao ou Invasao ele somente
podera voltar para o estado Seguro com a agao de um funcionario da seguranca que deve

ter feito a devida inspecao da zona ameacada.

31

5 Projeto

Nesta se¢do vamos descrever o conjunto de softwares e hardwares adotados para

colocar em teste a proposta de arquitetura para domotica que foi apresentada por esse
trabalho.

A arquitetura multi-agente baseada em ROS que foi escolhida no capitulo referente
aos requisitos de projeto serd implementada num hardware Raspberry Pi que deverd su-
portar, além da arquitetura, o processamento da biblioteca OpenCV, o driver da cAmera

de video e todos os agentes necessarios para realizar a tarefa de supervisionamento.

Em paralelo a esse sistema, teremos um sistema de informacoes que sera respon-
savel por apresentar os dados coletados relativos a seguranca, inclusive o video captado

pelas cameras que estiverem transmitindo.

5.1 Estrutura do sistema

Este projeto implementa um sistema de seguranca distribuido que pode monitorar

em paralelo diversos locais fazendo uso de uma arquitetura multi-agente.

O diagrama da figura 10 ilustra o funcionamento do sistema.

Sensor 1.1 ——| Interpretador 1.1 I——

Monitor 1

Sensor 1.n — Interpretador 1.n — Comunicador 1 — Funcionério 1

PHP

Sensor p.1 I— Interpretador p.1

|
Monitor p

Sensor p.m [— Interpretador p.m Comunicador p [

Figura 10 — Diagrama do funcionamento do sistema

Agente Sensor O agente sensor é o agente responsavel pela captacao das imagens atra-
vés da camera USB e a disponibilizacao destas imagens em um feed de mensagens
do tipo publisher-subscriber. Deste modo, as imagens captadas pela camera ficarao
disponiveis para que outros agentes recebam essas mensagens e possam efetuar as

tarefas atribuidas a eles.

32 Capitulo 5. Projeto

Agente Interpretador O agente interpretador possui como fungoes receber o feed de
mensagens contendo as imagens enviadas pelo agente sensor, interpretar estas ima-
gens, ou seja, verificar se houve ou ndo uma invasao do ambiente e notificar os
outros agentes sobre a analise das imagens para que as devidas providencias sejam

tomadas.

Agente Monitor O agente monitor é responsavel por convergir os sinais de status de
varios agentes interpretadores de uma zona, as imagens enviadas pelos agentes sen-
sores desta mesma zona e também uma comunicagao com o servidor para saber o
status desta zona no sistema de informacoes. Com estas informagoes este agente

serd capaz de determinar o estado da zona atual e salvar as imagens em disco.

Agente Comunicador O agente comunicador é responsavel por fazer a transmissao das

imagens salvas em disco pelo agente monitor para o sistema de informacoes.

Agente Funcionario O agente funcionario é responsavel por voltar o sistema ao modo
seguro apds uma invasao. Varios funcionarios podem ser responsaveis pela seguranca

da mesma zona.

Como é possivel observar através da figura 10 cada zona possui apenas um agente
monitor e um agente comunicador, no entanto, elas podem possuir intimeros agentes
sensores e interpretadores. Contudo, estes dois agentes precisam existir sempre aos pares,
pois este conjunto serd a representacdo de uma camera. O agente sensor captando as

imagens e o agente interpretador analisando estas imagens.

Também ¢é possivel observar que apenas os agentes monitor e comunicador tem
conhecimento da existéncia do sistema de informagao e que o funcionario nunca se co-
municard diretamente com os agentes do sistema ROS, este utilizara a interface homem-
maquina para se comunicar com o sistema de informacao, que passard as informacoes

para os agentes monitores.

5.2 Desempenho esperado

O sistema modelado para essa prova de conceito possui quatro fungdes principais
que deverao ser executadas pelo conjunto. Sao elas: “Captagao de imagens, Processamento

e geragao da informagao, transmissao e apresentacao dos dados”,

Para realizar a tarefa de captagao de imagens o Raspberry Pi precisa ter um agente
que suporte o driver wvc__camera (TOSSELL, 2013), que é capaz de captar as imagens de
uma camera USB. Apés a captagao das imagens, no entanto, elas ndo estao prontas para
serem transmitidas para outros agentes, portanto, ¢ necessario converter estas imagens

para um formato transmissivel pelo ROS. Isto se da através do pacote image transport

5.2. Desempenho esperado 33

(MIHELICH, 2013), que permite a publicagao e a subscri¢ao do feed de imagens e oferece
suporte para o transporte de imagens em formatos comprimidos e em conexoes de baixa

capacidade de transmissao.

Com as imagens captadas, o proximo passo é o processamento destas para geracao
de informagoes. Para o processamento de imagens é necessaria a conversao das imagens
para um formato que permita a manipulagdo destas. Isto se da através do formato Mat da
biblioteca OpenCV (Open Source Computer Vision Library) (OPENCV, 2013). OpenCV
¢ uma biblioteca de fungoes voltadas para a visao computacional em tempo real. Ela foi
desenvolvida pela Intel em 1999 e possui suporte para diversas linguagens de programacao,
inclusive C++. Com esta biblioteca é possivel analisar as imagens pixel a pixel e assim

realizar a deteccao de intrusoes.

Como uma invasao no ambiente monitorado pode ser detectado quando houver
um movimento no ambiente, é necessario um algoritmo para deteccao de movimento nas
imagens. Diversos sao os algoritmos para tal e neste projeto utilizaremos um algoritmo de
comparacao de frames subsequentes. Um maior detalhamento deste algoritmo é detalhado

no apéndice D.1.

Outros dois algoritmos para detecgao de invasoes foram desenvolvidos e testados,
no entanto, optou-se pela utilizacao do algoritmo de comparacao de frames subsequentes.

Mais detalhes sobre os outros algoritmos podem ser encontrados no apéndice D.

Com a informacao de invasao de varias cameras de uma mesma zona ¢ possivel
determinar o estado desta zona, ou seja, se a zona se encontra em estado de seguranca,
alerta ou invasao. Este estado da zona é transmitido para o servidor através de uma
chamada HTTP e casa a zona se encontre em estado de alerta ou invasao a imagem das
cameras da zona também sao enviadas para o servidor através de uma chamada HTTP e

codificando a imagem em base64 para transmitir informacoes bindrias em forma de texto.

Como interface com o usuario nés escolhemos adotar a linguagem PHP por sua
facilidade de acesso a dados, por ser multi-plataforma: funcionando tanto em Linux, Win-

dows e Solaris, e também por possuir cédigo-fonte aberto.

Esse sistema sera desenvolvido utilizando um framework que utiliza o padrao MVC
com o objetivo de proporcionar agilidade no desenvolvimento e estard armazenado num
web server que pode ser hospedado na nuvem, essa é mais uma vantagem de sua utilizacao

pois os dados nao sao armazenados nas dependéncias do local monitorado.

A comunicacdo com a arquitetura multi-agente serd feita via chamada http-post
tanto para transferéncia do estado do sistema quanto para a transferéncia das imagens,
isso implica numa solucao de compromisso entre resolu¢ao da imagem e velocidade de

transferéncia de frames.

O sistema utilizard o projeto ffmpeg para trabalhar com os videos. Para acelerar

34 Capitulo 5. Projeto

a interpretagao dos dados pelo usuario a apresentacao dos dados deve ser clara, direta e

se aproximar ao maximo do tempo real para garantir a maior seguranca.

35

6 Resultados

Para a realizagdo da prova de conceito foram realizadas implementagoes do sis-
tema completo em funcionamento com diferentes formagoes dos agentes como pode ser
observado na secao 6.1. Posteriormente, na se¢do 6.2, sdo discutidos os resultados obtidos
desta prova de conceito e a implementacao das propriedades definidas pelo modelo de

referéncia.

6.1 Implementacao do sistema completo

Para testar o funcionamento do sistema completo foram utilizados duas unidades
do Raspberry Pi com uma camera USB conectada a cada um destes. Uma imagem do

sistema pode ser observado na figura 11.

Figura 11 — Sistema ROS completo

Além disso foram realizados dois testes com duas formacoes diferentes dos agentes

como sera descrito nas préximas sec¢oes.

Ambas as configuragoes dos agentes funcionaram sem problemas e puderam cum-
prir com seu propoésito: detectar uma invasao na zona, informar o usuario final e gravar

as imagens das cameras no banco de dados.

6.1.1 Testel

No primeiro teste realizado foram colocados os dois Raspberry Pis para funcionar,

sendo que cada um destes Hardwares representava uma zona. Desta maneira, cada um

36 Capitulo 6. Resultados

dos Raspberry Pis possui todos os agentes: sensor, interpretador, monitor e comunicador.

Além disso, um deles ainda deve possuir um Master rodando nele.

Uma ilustracao do sistema pode ser observado na figura 12.

Hardware 1 Hardware 2

ROS Master

Sensor Sensor

erpretador Interpretador

Monitor Monitor

Comunicador Comunicador

Sistema de Informacgdes

Figura 12 — Diagrama com a estrutura do sistema no teste 1

6.1.2 Teste 2

No segundo teste realizado foram colocados os dois Raspberry Pis em uma mesma,
zona, ou seja, apenas um destes Hardwares deveria conter um agente monitor e uma
agente comunicador. Como pode ser observado na figura 13 o Hardware 1 possui o ROS
Master nele enquanto o Hardware 2 possui os agentes monitor e comunicador. Desta
maneira, o Hardware 1 se comunica apenas com o Hardware 2, enquanto o Hardware 1

serd responsavel por toda a comunicacao com o sistema de informagoes.

Hardware 1 Hardware 2

ROS Master
Sensor Sensor

Interpretador Interpretador

Monitor

Comunicador

Sistema de Informacgoes

Figura 13 — Diagrama com a estrutura do sistema no teste 2

6.2. Discussdo dos resultados 37

6.2 Discussao dos resultados

A implementacao do sistema completo foi realizada com sucesso em ambos os testes
feitos, com as diferentes formagoes dos agentes. Com isso foi possivel observar as propri-
edades idealizadas pelo modelo de referéncia da secao 3.2, o sucesso da implementacao

destas propriedades e outros pontos julgados necessarios de serem abordados.

6.2.1 Raspberry Pi

Durante a realizacao dos testes o Raspberry Pi se mostrou completamente capaz
de suportar 5 agentes funcionando simultaneamente em seu sistema. Isso acarretou numa
diminuicao de rendimento dos agentes individuais, mas nao afetou o funcionamento global

do sistema.

A principio o sistema suportaria a adicao de novos agentes neste mesmo Raspberry
Pi, mas a real exequibilidade desta implementacao precisa ser colocada a prova para

confirmarmos sua plausibilidade.

6.2.2 Funcionamento da arquitetura

No modelo convencional de arquitetura multi-agente os agentes se comunicam entre
si para determinar o que fazer, mas na arquitetura utilizada os agentes ja possuem tarefas

pré-definidas e possuem pouca ou nenhuma inteligéncia na execucao de suas tarefas.

Funcionalmente esta pré-definicio da agao dos agentes possibilitou os agentes a
focarem 100% do tempo na execugao das tarefas e ndo na comunicac¢ao com outros agentes
para a defini¢ao do que fazer, por isso nao encontraram o problema destacado em (SMITH,
1980), onde os agentes passam mais tempo combinando o que fazer do que efetivamente

realizando a tarefa.

6.2.3 Algoritmo de deteccao de invasao

O algoritmo utilizado para deteccao de invasao, comparacao de frames subsequen-
tes, mostrou-se capaz e suficiente para realizar a tarefa designada. Obviamente o algoritmo
possui suas limitagoes e pontos fracos, como a incapacidade de deteccao de invasdo em
um plano muito distante; pessoas caminhando muito devagar a frente da camera, pois a
diferenca entre os frames se torna muito pequena; entre outros. No entanto, o algoritmo
se conseguiu detectar uma invasao em todas as ocasioes de pessoas andando normalmente

em primeiro plano.

38 Capitulo 6. Resultados

6.2.4 Arquitetura Mutli-agente

A implementacao de um sistema com a arquitetura multi-agente possiblitou ao
sistema uma facil expansao em escala. Nos dois testes realizados foi possivel observar a
facilidade de adigdo de um novo agente sensor e interpretador no teste 2 e um agente
sensor, interpretador, monitor e comunicador no teste 1. Este mesmo procedimento po-
deria ser aplicado mais vezes para expansao de nimero de cameras por zonas e também

de zonas no espago.

No ambito da expansao em escopo foi possivel observar a facilidade de adigao de
uma nova funcionalidade ao sistema durante a execugao do projeto. Por exemplo, o projeto
inicial nao previa a existéncia de um agente comunicador no sistema, no entanto, devido
a problemas de velocidade de comunicagdo este agente foi implementado e a facilidade
para adicao de um novo tipo de agente ao sistema foi enorme devido a nao necessidade

de modificacao nos agentes pré-existentes.

6.2.5 Flexibilidade

Apos implementacao dos dois testes na segao 6.1 foi possivel verificar através da
mudanca de um teste para o seguinte que a flexibilidade do sistema é enorme, pois apenas
é necessario modificar a atribuicao de zona dos agentes sensor e interpretador do Hardware
1 para que o sistema ja tivesse uma estrutura completamente diferente em funcionamento.
Desta maneira se pode demonstrar que o sistema possui uma grande flexibilidade, pois ao
modificar o posicionamento (zona) de uma camera, é apenas necessario mudar a atribuigao

de zona deste agente.

Em outro caso, quando a criagao de uma nova zona ¢é necessario, também é ne-
cessaria a criacao de um agente monitor e um agente comunicador para esta zona. No
entanto, apesar da necessidade de criar mais agentes, a dificuldade para realizacao de tal

tarefa continua minima.

6.2.6 Agentes leves

Os agentes desenvolvidos neste projeto realizam tarefas minimas, mas somando
as agoes de todos eles é possivel realizar uma tarefa mais complexa, deteccdo de invasao
de uma zona. Estes agentes foram desenvolvidos desta maneira para torna-los leves e
possibilitar a separacao deles em agentes diferentes caso o hardware nao suportasse o
processamento requisitado por eles. No entanto, como pode ser observado no primeiro
teste realizado, os agentes desenvolvidos sao bastante leves e possibilitaram a execugao

de todos eles simultaneamente em um mesmo n6, Hardware 1.

Obviamente o processamento do Raspberry Pi nao ¢ infinito e, portanto, os proxi-

mos agentes desenvolvidos devem seguir a mesma linha de agentes leves e simples para que,

6.2. Discussdo dos resultados 39

a partir do momento que o hardware nao possua capacidade de processamento suficiente,

os agentes possam ser separados em agentes diferentes.

6.2.7 Controle distribuido

O controle distribuido idealizado pelo modelo de referéncia visava a nao necessi-
dade de uma central de controle de todas as zonas e convergéncia de sinais. Este objetivo
foi em parte atingido, pois ja existe um controle distribuido por parte dos agentes moni-
tores que possuem controle, cada um, sobre uma zona. No entanto, ainda existe um ponto
de confluéncia de todos as informagoes das zonas que é o servidor e este obstaculo nao

pode ser contornado, tornando-se este um ponto fraco do sistema.

Além disso, o sistema como um todo ainda necessita de um agente master em
funcionamento para o sistema funcionar, sendo este também um ponto falho. No entanto,
este nao ¢ um ponto tao critico, pois o agente master pode estar localizado em qualquer
um dos hardwares e para este problema ja existem algumas solucoes de multi-master que

poderiam ser aplicadas a este sistema, mas que nao foram escopo deste.

6.2.8 Seguranca da rede

Como o sistema na plataforma ROS nao oferece segurancga, é necessario implemen-
tar uma camada de rede para assegurar a nao invasao de terceiros a rede onde dados e
comunicagoes sigilosas sao transmitidos e armazenados. Isso pode ser obtido através da
implementacdo de uma VPN. Com isso os agentes e o servidor conseguem se comunicar
de maneira segura e mesmo que um possivel invasor conheca, por exemplo, o enderego

do servidor utilizado, ele nao conseguira acessa-lo a menos que esteja dentro da mesma
VPN.

6.2.9 Velocidade de transmissao de dados

A velocidade de transmissao das imagens do agente comunicador para o servidos
ainda é um ponto a ser melhorado. O sistema é capaz de enviar as imagens ao servidor,
contudo ele nao consegue realizar esta tarefa em tempo real e, portanto, existe um actiimulo
de imagens a serem enviadas para o servidor mesmo apos a atualizagao do estado de uma
zona para seguro novamente. Desta maneira, as imagens serao disponiveis para o usuario
final com um atraso que pode ser bastante significativo dependendo de quanto tempo de
video foi armazenado, porque o atraso é acumulativo e o agente apenas consegue recuperar
este atraso quando a zona esta em estado de seguranca e nao ¢ necessario o envio de novas

imagens para o servidos.

40 Capitulo 6. Resultados

6.2.10 PHP

O sistema de informacao mostrou-se eficaz nessa prova de conceito, atendendo as
exigéncias de aparéncia e clareza. O projeto ffmpeg também se mostrou muito eficaz por

ser capaz de criar os videos em tempo real.

Como previsto, a comunicagao via http encontrou dificuldades de congestao e de-

mora no ensaio dos frames mas que foi resolvido com a introducao do agente comunicador.

41

7 Conclusao

Como dito anteriormente o propésito deste trabalho é mostrar a implementabili-
dade de uma estrutura com arquitetura multi-agente e a partir do desenvolvimento de um
sistema de segurancga implementado segundo um modelo de referéncia cuja arquitetura se

baseia em uma arquitetura multi-agente.

O primeiro claro ponto positivo da implementacao de um sistema multi-agente
é a facil expansao do sistema tanto em escala. No sistema abordado uma expansao em
escala seria a adicdo de novas cameras ao sistema. Esta tarefa seria facilmente atingida
colocando em operagao mais agentes sensores, interpretadores e quando necessario agentes
monitores e comunicadores (caso as novas cameras estejam localizadas em novas zonas).
Dada a arquitetura do sistema, uma acao de adi¢cao de novos agentes nao teria influéncia
sobre os outros agentes e, portanto, esta expansao é ilimitada diferentemente dos atuais

sistemas de seguranga que possuem limita¢oes de nimero de cameras, nimero de sensores,
etc (VERISURE, 2013), (SMSOLUTION, 2013), (SU; LEE; WU, 2006).

Outro ponto a ser destacado ¢é a facilidade da expansao em escopo do sistema.
Devido a forma de comunicacdo entre os agentes, publisher e subscriber, este sistema
pode ser, com facilidade, acrescido em novas funcionalidades. Por exemplo, o agente sensor
ja disponibiliza as imagens obtidas da camera em um feed de mensagens, assim como o
agente interpretador envia o status de invasao desta cAmera em outro feed. Desta maneira
¢é possivel uma implementacao de um agente que receba as imagens dos agente sensor e o
status do agnete interpretador e caso exista uma invasao faga o reconhecimento de face no
invasor. Esta seria uma funcionalidade que poderia ser acrescida ao sistema, mas como as
imagens sao publicadas em feeds de mensagens, ilimitados subscribers podem receber as
mensagens e realizar diferentes tarefas, portanto, a expansao de funcionalidades do sistema
se da de uma maneira relativamente simples, pois nao ha a necessidade de modificacao

de agentes pré-existentes.

Com o desenvolvimento deste sistema de seguranca se pode notar mais uma das
vantagens da implementacao de uma arquitetura multi-agente como a proposta: os agen-
tes conseguem funcionar independentemente do funcionamentos dos outros agentes. Ob-
viamente alguns agentes necessitam de informagoes fornecidas por outros agentes para
executarem suas tarefas, mas um agente continua em modo de operacao mesmo quando
outro agente para de funcionar. Com isso, é possivel que exista um agente monitor que
seja capaz de recolocar um agente parado em funcionamento ou mesmo colocar um agente
parado em modo de operagao em outro hardware para que este volte a fornecer informa-

¢Oes para um terceiro agente. Esta seria uma funcionalidade muito 1util para o sistema,

42 Capitulo 7. Conclusao

pois o proprio sistema seria capaz de detectar mal funcionamentos e corrigi-los, tornando
assim o sistema mais inteligente e independente, além de mais seguro. Contudo, esta fun-
cionalidade nao seria aplicavel apenas ao sistema de seguranca proposto. Esta seria uma
caracteristica da arquitetura dos agentes, que poderia ser utilizada para a implementacao

de diversos outros sistemas de automagao e nao somente a sistemas de seguranca.

Obviamente a implementacgao deste sistema com esta arquitetura também possui
os seus pontos negativos. O primeiro ponto a ser abordado é que a implementagdo dos
agentes no Raspberry Pi tem as suas vantagens do ponto de vista de flexibilidade do
sistema, ou seja, os hardwares conseguem ser facilmente trocados de posi¢ao, contudo
este fato também impds uma limitagao na capacidade de processamento dos agentes, pois
o processador deste hardware também é limitado e, portanto, é necessario construir os
agentes de forma que estes efetuem tarefas simples e que conjuntamente consigam efetuar
tarefas complexas. Desta maneira, é possivel dividir agentes que necessitem de mais poder

de processamento em hardwares diferentes.

Outro ponto a ser abordado é a seguranca da rede, pois nao existe seguranca na
camada dos agentes no sistema ROS, portanto, qualquer um poderia ler as mensagens
publicadas em feeds pelos agentes bem como modificar os estados das zonas facilmente,
por isso, é imprescindivel que o sistema inteiro funciona embaixo de uma VPN para que

esta realize o papel da camada de seguranca do sistema.

O terceiro ponto falho deste sistema é a centralizacao de atividades. Para que o
sistema desenvolvido funcione é necessario o funcionamento de um agente master, que
comanda toda a comunicacao entre os agentes e sem o funcionamento deste o sistema
inteiro para de funcionar. Portanto, este é um ponto falho do sistema, mas ja existem
algumas solu¢des multi-master para sanar este problema. Além disso, existe a convergéncia
de sinais de todas as zonas para um unico ponto que é o servidor, logo, este também é

um ponto falho do sistema que pode se tornar um alvo para possiveis invasores.

7.1 Trabalhos futuros

Com o desenvolvimento deste trabalho, muitos caminhos podem ser seguidos em
trabalhos a serem desenvolvidos no futuro. Estas possibilidades foram divididas em duas
categorias: melhorias na estrutura multi-agente (se¢ao 7.1.1) e melhorias e implementagao

de novas funcionalidades no sistema (segao 7.1.2).

7.1.1 Estrutura multi-agente

Algumas melhorias no estrutura multi-agente do sistema poderiam ser desenvolvi-
das para melhorar a qualidade da estrutura. Um exemplo de uma melhoria nesta categoria

seria a implementacao de um sistema com multiplos masters. Na atual configuragao o sis-

7.1. Trabalhos futuros 43

tema conta com um tnico master e este é obrigatorio para que o sistema funcione. Deste
modo, se, em algum momento, o hardware contendo o master é desconectado ou desligado,

o sistema inteiro perderd sua funcionalidade. Por isso, este é um ponto falho no sistema.

Outra melhoria seria a capacidade do préprio ser capaz de verificar se um agente
possui um mal funcionamento ou sofreu um ataque e o proprio sistema conseguir de fazer
o agente voltar a funcionar. Além disso, o sistema poderia detectar que um hardware nao
funciona e fazer os agentes deste hardware funcionarem em um hardware diferente para

que o sistema nao perca suas funcionalidades.

7.1.2 Funcionalidades do sistema

No ambito de funcionalidades do sistema diversas novas funcionalidades poderiam
ser desenvolvidas para o sistema. Como o sistema foi desenvolvido de forma a ser al-
tamente expansivel em escopo, novos agentes podem facilmente ser implementados para
desenvolverem fungoes diferentes no sistema. Algumas ideias de agentes seriam um agente
para travamento de portas e janelas, sensor de temperatura e fumaca para deteccao de

possiveis incéndios, entre outros.

45

Referencias

ABREU, B. et al. Video-based multi-agent traffic surveillance system. In: Intelligent
Vehicles Symposium, 2000. IV 2000. Proceedings of the IEEE. [S.l.: s.u.], 2000. p.
457-462.

ADMIN, S. Site Templates - Slate Admin | ThemeForest. 2013. http://themeforest.
net/item/slate-admin/133854.

BROWNLOW, K. Silent Films: What Was the Right Speed? Sight and Sound, p.
164-167, 1980.

GOMASA, S. P. Modular Design and Implementation of a Low Cost Home Automation
System using Web-Services. Dissertagdo (Mestrado) — Massey University, Abany, New
Zealand, 2011.

HSU, C.-L.; YANG, S.-Y.; WU, W.-B. Constructing intelligent home-security system
design with combining phone-net and bluetooth mechanism. In: Machine Learning and
Cybernetics, 2009 International Conference on. [S.1.: s.n.], 2009. v. 6, p. 3316-3323.

KUBERA, Y.; MATHIEU, P.; PICAULT, S. Everything can be agent! In: AAMAS. [S.1.:
s.n., 2010. p. 1547-1548.

Hongyue Luo. Intelligent Home Security System. 2007. US 2007/0182543 A1l. Disponivel
em: <http://www.patentlens.net/patentlens/patent/US 2007 0182543 Al /en/>.

MIHELICH, P. image_transport - ROS Wiki. 2013. http://www.ros.org/wiki/image
transport.

NYFFENEGGER, R. CMSSW_3 9 7 Reference Manual. 2013. https://cmssdt.
cern.ch/SDT/doxygen/CMSSW_3_9_7/doc/html/db/dab/PixelBase64_8cc.html.

OPENCV. OpenCV | OpenCYV. 2013. http://www.opencv.org/.

SHARPLES, S.; CALLAGHAN, V.; CLARKE, G. A Multi-Agent Architecture for
Intelligent Building Sensing and Control. International Sensor Review Journal, v. 19, p.
135-140, fev. 1999.

SMITH, R. G. The contract net protocol: High-level communication and control in a
distributed problem solver. IEEE Trans. Comput., IEEE Computer Society, Washington,
DC, USA, v. 29, n. 12, p. 1104-1113, dez. 1980. ISSN 0018-9340. Disponivel em:
<http://dx.doi.org/10.1109/TC.1980.1675516>.

SMSOLUTION. SMSolution - Sistemas de sequrancga - Alarmes - - Alarmes - Cameras -
Portoes Automdticos - Interfones. 2013. http://smsolution.com.br/2013/alarmes/.

SONG, G. et al. A surveillance robot with hopping capabilities for home security.
Consumer FElectronics, IEEE Transactions on, v. 55, n. 4, p. 2034-2039, 2009. ISSN
0098-3063.

http://themeforest.net/item/slate-admin/133854
http://themeforest.net/item/slate-admin/133854
http://www.patentlens.net/patentlens/patent/US_2007_0182543_A1/en/
http://www.ros.org/wiki/image_transport
http://www.ros.org/wiki/image_transport
https://cmssdt.cern.ch/SDT/doxygen/CMSSW_3_9_7/doc/html/db/dab/PixelBase64_8cc.html
https://cmssdt.cern.ch/SDT/doxygen/CMSSW_3_9_7/doc/html/db/dab/PixelBase64_8cc.html
http://www.opencv.org/
http://dx.doi.org/10.1109/TC.1980.1675516
http://smsolution.com.br/2013/alarmes/

46 Referéncias

SU, J.-H.; LEE, C.-S.; WU, W.-C. The design and implementation of a low-cost and
programmable home automation module. Consumer Electronics, IEEE Transactions on,
v. 52, n. 4, p. 1239-1244, 2006. ISSN 0098-3063.

TOSSELL, K. wve__camera - ROS Wiki. 2013. http://www.ros.org/wiki/uvc_camera.

VALLEJO, D. et al. A multi-agent architecture for supporting distributed normality-
based intelligent surveillance. Eng. Appl. of Al v. 24, n. 2, p. 325-340, 2011.

VERISURE. Alarmes para residéncias | Verisure Brasil. 2013. http://www.verisure.
com.br/alarme-residencias.

http://www.ros.org/wiki/uvc_camera
http://www.verisure.com.br/alarme-residencias
http://www.verisure.com.br/alarme-residencias

Apéndices

49

APENDICE A — Diagramas do sistema ROS

A.1 Casos de uso

A.1.1 Especificacdo de casos de uso

Nesta secao serao tratados os casos de uso do sistema ROS. Para tal pode ser
observado na subsecao A.1.1.1 o diagrama de casos de uso do sistema. Em seguida podem
serao identificados os atores do sistema na subsecao A.1.1.2 e os casos de uso na subsecao

A.1.1.3. E por fim o detalhamento de cada um dos casos de uso na subsecao A.1.1.4.

A.1.1.1 Diagrama de casos de uso

A figura 14 mostra o diagrama de casos de uso desenhado para o sistema ROS.

A.1.1.2 Identificacdo dos atores

Como especificado na secao 4, o sistema ROS conta com quatro atores: sensor,

interpretador, monitor e comunicador.

Ator-01 Sensor Agente responsavel pela captagao das imagens
Ator-02 Interpretador Agente responsavel pela interpretacao das imagens
Ator-03 Monitor Agente monitorador da zona

Ator-04 Comunicador Agente responsavel pela comunicacao com o sistema de infor-

magoes PHP

A.1.1.3 Identificacdo dos casos de uso

O diagrama de casos de uso do projeto do sistema ROS pode ser observado na

figura 14.

Como pode ser observado neste diagrama, o agente sensor sera responsavel captar
a imagem da cdmera e publicar esta imagem em um feed de mensagens. A partir deste
feed com as imagens da camera os agentes interpretador e monitor irao subscrever a essa

publicagao.

Sensor

50

APENDICE A. Diagramas do sistema ROS

Sistema de informagio ROS

|
|
!

|
|
!
i
|
|

|
@

Enviar Status
T

Salvar Imagem

.

| ——"
/ﬁwmhmr
Analisar imagem
"
S

AN

N /
™
.
.< | P
e =TT
-——- " ™.
Enviar Imagem

Receber Imagam

sSEAN

h
| N | ,//M \
, ! onitor
\ Y
|
\
|
\ Atualizar Status
|
\ /
\ Y
|
!
]
'\‘ Recebar Status PHP
\
Abrir Imagem
R
hY “-x_..._“_‘_‘
Transmitir In‘ﬂgem f————
—-—'—'_'_'_'_._._._._._._. Comunicador

Figura 14 — Diagrama de casos de uso do sistema ROS

O agente interpretador devera analisar esta imagem e detectar possiveis invasoes.

De acordo com essa andlise devera publicar um feed de mensagens com uma mensagem

O agente monitor estara subscrevendo ao feed de mensagens com as imagens da

camera e com o status da zona. Como haverd mais de um agente em uma mesma zona

A.1. Casos de uso 51

e apenas um agente monitor por zona, este deve concentrar as mensagens de status da
zona e também receber atualizacoes do PHP sobre o status da zona e atualizar o status
da zona real. Com a defini¢do do status real da zona, as imagens dos agentes sensores da

zona deverao ou nao ser salvas no em arquivo.

O agente comunicador ficard todo o tempo observado se existe uma imagem salva
em arquivo no disco. Em caso positivo, este agente transmitird essa imagem para o sistema

de informacgoes.

Estes casos de uso sdo listados abaixo.

UC-01 Captar imagem Capturar a imagem de uma camera USB conectada ao hard-

ware
UC-02 Publicar imagem Publicar imagem em um feed de mensagens
UC-03 Subscrever imagem Subscrever ao feed de mensagens da imagem

UC-04 Analisar imagem Analisar a imagem recebida e definir se ha ou ndao uma inva-

sao na imagem
UC-05 Publicar status Publicar status da camera em um feed de mensagens
UC-06 Subscrever status Subscrever ao feed de mensagens do status

UC-07 Receber status PHP Receber o status da zona proveniente do sistema de in-

formagoes PHP
UC-08 Atualizar status Atualizar status da zona no ROS e PHP, se necessario
UC-09 Salvar imagem Salvar imagem no disco
UC-10 Abrir imagem Abrir imagem salva no disco

UC-11 Transmitir imagem Transmitir imagem para o sistema de informagoes PHP

A.1.1.4 Detalhamento dos casos de uso

UC-01 Captar imagem Este caso de uso especifica a acao de capturar a imagem de

uma camera conectada a entrada USB do Raspberry Pi.

Atores Sensor
Pré-condicoes Camera deve estar conectada a entrada USB do Raspberry Pi

Pé6s-condigGes As imagens estarao dentro do agente sensor para que as tarefas designa-

das a este agente possam ser executadas

52 APENDICE A. Diagramas do sistema ROS

UC-02 Publicar imagem Este caso de uso especifica a acao de modificar o formato da
imagem capturada do formato de imagem do ROS para image transport e publicar esta
imagem em uma feed de mensagens para que outros atores possam utilizar estas imagens

captadas em suas respectivas tarefas.

Atores Sensor
Pré-condic6es Imagem capturada

Pé6s-condigoes Feed de mensagens com a imagem da camera

UC-03 Subscrever imagem Este caso de uso especifica a agao de subscrever ao feed

de mensagens contendo a imagem da camera do agente sensor.

Atores Interpretador e Monitor
Pré-condicoes Feed de mensagens contendo a imagem publicado pelo agente sensor

Pés-condigoes Imagem disponivel para agentes interpretador e monitor para que as

tarefas designadas a estes agentes possam ser executadas

UC-04 Analisar imagem Este caso de uso especifica a acdo de modificar o formato
das imagens recebidos de image transport para o formato de imagens do OpenCV, Mat,
para que as imagens possam ser tratadas e analisadas. Também ¢ aplicado as imagens um
algoritmo de comparacao de imagens subsequentes para deteccao de intrusoes e geracao
de uma variavel booleana de status para designar a detec¢ao ou nao de um invasor neste

Sensor.

Atores Interpretador
Pré-condigoes Imagem disponivel no agente interpretador

Pés-condigoes Status do invasao no agente sensor correspondente

UC-05 Publicar status FEste caso de uso especifica a agdo de publicar o status de

invasao nas imagens da camera em um feed de mensagens.

Atores Interpretador
Pré-condigoes Imagem analisada e variavel de status setada

Pés-condicgoes Feed de mensagens com status de invasao nas imagens da camera

A.1. Casos de uso 53

UC-06 Subscrever status Este caso de uso especifica a agao de subscrever ao feed
de mensagens contendo o status de invasao nas imagens de todas as cameras de uma

determinada zona.

Atores Monitor
Pré-condicgoes Feed de mensagens contendo os status de invasao das cameras da zona

Pés-condicgoes Status de invasao das cameras de uma zona

UC-07 Receber status PHP Este caso de uso especifica a acao de receber o status

de invasdao de uma determinada zona no sistema de informagoes PHP.

Atores Monitor
Pré-condicg6es Sistema de informagoes PHP rodando e zona cadastrada no sistema

Pés-condic6es Status de invasao da zona no sistema PHP

UC-08 Atualizar status Este caso de uso especifica a acdo de analisar os status de
invasao de todas a cameras de uma determinada zona e também o status da zona no
sistema de informagoes e determinar o atual status desta zona. Também é preciso atualizar

este status de invasao da zona no sistema de informagoes através de uma chamada HTTP.

Atores Monitor

Pré-condigoes Status de invasao das cameras da zona e da zona no sistema de informa-

coes

Pés-condigoes Status de invasao atual da zona

UC-09 Salvar imagem Este caso de uso especifica a agao de salvar a imagem captada

pelas cameras da zona em disco no caso de uma invasao ter sido detectada na zona.

Atores Monitor
Pré-condicgoes Invasao detectada na zona

Pés-condigoes Imagem salva no disco

54 APENDICE A. Diagramas do sistema ROS

UC-10 Abrir imagem Este caso de uso especifica a acdo de abrir a imagem salva em

disco

Atores Comunicador
Pré-condigoes Existir uma imagem salva em disco

Pés-condigoes Imagem disponivel no agente comunicador para que as tarefas designadas

a este agente possam ser executadas

UC-11 Transmitir imagem Este caso de uso especifica a agao de transmitir a imagens

para o sistema de informac¢oes PHP através de uma chamada HTTP.

Atores Comunicador
Pré-condigoes Imagem disponivel no agente comunicador

Pés-condicoes Imagem enviada para o sistema de informagoes PHP

A.2 Diagrama de sequéncia

Para os casos de uso UC-04 Analisar Imagem e UC-11 Transmitir Imagem no
diagrama de casos de uso 14 foram desenvolvidos os diagramas de sequéncia, figuras 15 e
16 respectivamente. Apenas estes casos de uso foram desenvolvidos devido a complexidade

destes casos de uso e da importancia deste no sistema.

No diagrama do caso analisar imagem 15 é possivel observar que a imagem que é
inicialmente no formato de image transport sera transformada para o formato Mat do
OpenCV, a seguir a imagem devera ser transformada em uma imagem bindria e comparada
com o frame anterior para a deteccao de diferencas nos frames. Entao é possivel contar o
numero de pixels diferentes nestas duas imagens e setar o status de invasao para invasao
caso existe diferenca em mais de 2% dos pixels das imagens. Enfim salva-se a imagem

para que o mesmo fluxo possa ser realizado com o préximo frame.

No diagrama do caso transmitir imagem 16 a imagem precisa ser codificada utili-
zando o padrao base64 para que possa ser enviada através de uma chamada HT'TP, além
disso ¢é preciso aplicar o cédigo percentagem para eliminar caracteres especiais. Feito isso,
a chamada HTTP pode ser realizada e a imagem deve ser apagada do disco para que nao

seja enviada novamente ao servidor.

95

A.2. Diagrama de sequéncia

savalastFrame

salStatus

caleuleDiffarantPixalg

compare Frameas

galBinarylmage

imageaT rangpod20panC

Figura 15 — Diagrama de sequéncia do caso analisar imagem

dalatalm age Fram HI}

da Posl

parcaniEncada

ancodeBasag 4

Figura 16 — Diagrama de sequéncia do caso enviar transmitir imagem

o7

APENDICE B - Diagramas do sistema PHP

B.1 Casos de uso

B.1.1 Especificacdo de casos de uso
B.1.1.1 Diagrama de casos de uso

B.1.1.2 Identificacdo dos atores

Ator-01 Funcionario Pessoa responsavel pela seguranca do local, ele deve estar auten-

ticado por login e senha.

Ator-02 ServerPHP Ator que realiza as agoes internas do sistema.

B.1.1.3 Identificacdo dos casos de uso

UC-01 Fazer Login Permitir que um usudrio possa ter acesso ao sistema para visualizar
o estado do sistema, alterar o estado do sistema e baixar arquivos de video da lista

de logs do sistema.

UC-02 Fazer Logout Encerra a autenticagdo existente, assim impede o acesso ao sis-

tema.
UC-03 Renomear Zona Altera o rotulo da zona.

UC-04 Visualizar Zona Exibe o rotulo da zona, o seu estado e a lista de eventos asso-

ciada a essa zona.

UC-05 Listar Log de Eventos Exibe a lista de eventos conjunta de todas as zonas

cadastradas no sistema.
UC-06 Fazer Download Forca o download de um arquivo de video.
UC-07 Visualizar Sistema Exibe os estados de todas as zonas cadastradas no sistema.

UC-08 Atualizar Status da Zona PHP Altera o estado da zona no sistema de infor-

macao.

UC-09 Enviar Imagem Permite que uma imagem seja enviada para o sistema de in-

formacao.

98

APENDICE B. Diagramas do sistema PHP

/ | RN \

\

Funcionari

Sistema de Inform acdo PHP

e —

\ Atualizar Sta‘tu%I

Fazer Logout | PHP

—

|~ ///‘ —_—

Enviar Imagem

\
[Fazer Logln \ \

-__4___“_
S

\
- \ —
il Uw-l‘._hé /I
- v [Verificar dados de
\ «IIO:A'»\T —

\

Renomear Zona | \
Listar Log de

\
Eventcs

—

\
- \
\

— ~
-~
s - \\
e Tl owes
4 ¥ \“:k Y |
Visualizar Zona /
' Rseglstrar Ev ento

In
\
cflow

o

l Carregar Zonas

T N

/ \ Q_,anzar Sistema

| Fazer Doewnload

NS

—

Figura 17 — Diagrama de casos de uso do sistema PHP

rverP HP

UC-10 Verificar dados de Login Faz a autenticagao do funcionario por meio de usuéa-

rio e senha.

UC-11 Registrar Evento Salva as informagoes de uma mudanca de estado do sistema.

UC-12 Carregar Zonas Permite o cadastro de uma nova zona a ser monitorada ou

altera o estado de uma zona existente.

B.1. Casos de uso 59

B.1.1.4 Detalhamento dos casos de uso

UC-01 Fazer Login Este caso de uso especifica a acao de autenticacdo que um usuario
executa no sistema, com o objetivo de conectar-se a ele. Apenas usudrios cadastrados
podem se conectar ao sistema. Devem ser passadas as informacoes de usuario e senha
e, apos a validagao no sistema, o usuario recebe o acesso ao sistema de monitoramento.
S6 existe um tipo de usuario que é o funcionario da seguranca e este possui permissao
para: “Alterar o estado da zona, Renomear Zona, Fazer download do video” e todas as

visualizagoes.
Atores Funcionario
Pré-condicoes O ator deve estar cadastrado no sistema

Pés-condigoes O ator fica habilitado a interagir com o sistema

Fluxo basico

1. O ator decide se autenticar no sistema.

2. O sistema solicita as informacoes obrigatorias para autenticacdo: usuario e

senha.
O ator informa os dados.
O sistema valida os dados.

O sistema habilita o acesso do ator.

S A

A pagina de visualizacao do sistema é carregada
Fluxo alternativo A

1. No passo 4 do Fluxo Basico, caso haja erro na autenticacao.
2. O sistema informa erro ao ator.

3. O sistema volta para o passo 2 do Fluxo Basico.

UC-02 Fazer Logout Este caso de uso especifica a acdo de encerramento da sessao de

trabalho. O objetivo é impedir invasoes ao sistema por meio de uma sessao ja aberta.

Atores Funcionario
Pré-condicoes O usudario precisa estar autenticado no sistema

Pés-condicgoes O usudrio nao possui acesso ao sistema

60 APENDICE B. Diagramas do sistema PHP

UC-03 Renomear Zona Este caso de uso especifica a a¢ao de editar o nome de uma
zona. O objetivo é criar uma relagdo direta da zona que o funcionario esta visualizando e

o local que essa zona representa. Deve ser passados o cédigo da zona e o novo nome dela.

Atores Funcionério

Pré-condicoes O usuario precisa estar autenticado no sistema e a zona precisa estar

cadastrada

Pés-condicoes A zona esta cadastrada com um novo rétulo

UC-04 Visualizar Zona Este caso de uso especifica a a¢ao de visualizagao da zona.
O objetivo é reunir toda a informagao relativa a uma zona e exibi-la de forma clara e
concisa. Deve ser passado o cdédigo da zona e serao exibidos o rétulo da zona, o seu estado
e a lista de eventos associados a essa zona. Nessa tela o usuéario deve ter a opcao de alterar

o estado da zona.

Atores Funcionario

Pré-condicoes O usuario precisa estar autenticado no sistema e a zona precisa estar

cadastrada

Pés-condigoes

UC-05 Listar Log de Eventos Este caso de uso especifica a acao de listar o log de
eventos do sistema, com o objetivo de passar ao usuario uma visao geral dos eventos que

acontecem do sistema. O usuario precisa estar autenticado no sistema.

Atores Funcionério

Pré-condicoes O usuario precisa estar autenticado no sistema

Pés-condigoes

UC-06 Fazer Download Este caso de uso especifica a agao de fazer o download de um

arquivo de video do servidor. Somente usuarios autenticados podem executar essa agao.

Deve ser passado o codigo do arquivo que sera baixado.

Atores Funcionério
Pré-condicgoes O usuario precisa estar autenticado no sistema

Pé6s-condigoes O usuario possui o arquivo de video

B.1. Casos de uso 61

Fluxo basico

1. O ator decide baixar um arquivo do sistema.
2. O sistema recebe o cédigo do arquivo.

3. O sistema cria um video temporario com todas as imagens que encontrar no

servidor.

4. O sistema for¢ga o download do arquivo.

UC-07 Visualizar Sistema Este caso de uso especifica a agao de visualizar o sistema.
O objetivo é reunir toda a informacao relativa ao sistema e exibi-la de forma clara e

concisa.

Atores Funcionario
Pré-condicoes O usuario precisa estar autenticado no sistema

Pés-condigoes

UC-08 Atualizar Status da Zona PHP Este caso de uso especifica a acao de alterar
o estado da zona que é feita pelo funcionario da seguranca. Ele pode alterar o estado da
zona para os seguintes estados: “Seguro, alerta ou invasao”. Deve ser salvo um log da acao

realizada. Deve ser passados o codigo da zona e o novo estado.

Atores Funcionario
Pré-condicoes O usuario precisa estar autenticado no sistema

Pés-condicgoes O estado da zona é alterado. Um log da acéo é criado

UC-09 Enviar Imagem Este caso de uso especifica a agdo de envio de imagem para
o sistema de informagdo. Devem ser passados: o cdédigo da zona que a imagem pertence,
o codigo do arquivo de video que estd sendo construido, o nimero do frame que essa
imagem representa e os dados da imagem. Essa acao retorna o estado da zona cujo cédigo

foi passado.

Atores ServerPHP
Pré-condigoes A zona deve estar cadastrada. O arquivo de video deve estar cadastrado
Pés-condigoes A imagem fica salva no servidor. O estado da zona é retornado ao usuario

Fluxo basico

62 APENDICE B. Diagramas do sistema PHP

1. O sistema recebe um post do tipo enviarlmagem.

2. O sistema recebe os dados do post: codigo da zona, codigo do arquivo video,

numero do frame, string da imagem.
3. O sistema busca o status da zona.
4. O sistema decodifica o string da imagem e a salva no servidor.

5. O sistema retorna o status da zona.
Fluxo alternativo A

1. No passo 3 do Fluxo Basico, caso haja erro na busca pelo status.

2. O sistema retorna um erro ao ator.

UC-10 Verificar dados de Login Este caso de uso especifica a a¢do de validagao dos

dados de autenticacao. Devem ser passadas as informacgoes de login: “usuario e senha”.

Atores ServerPHP
Pré-condicgoes Usuario e senha para serem validados

Pés-condigoes Usuario e senha validados

UC-11 Registrar Evento Este caso de uso especifica a agdo de registrar os eventos
que acontecem no sistema com o objetivo de criar um log de seu ciclo de vida. Devem ser
passados o codigo da zona em que o evento ocorreu, o codigo da agao ocorrida, o codigo

do funcionario que realizou a acao e , se existir, o codigo do arquivo de video gerado.

Atores ServerPHP

Pré-condigoes As agdes: “Marcar como Seguro, Marcar como Alerta, Marcar como In-
vasao, Renomear Zona, Inserir Zona” devem estar cadastradas. O funcionario, a

zona e o arquivo de video também devem estar cadastrados

Pés-condigoes Um evento é criado

UC-12 Carregar Zonas Este caso de uso especifica a acdo de cadastrar uma zona
no sistema de informacao para passar a monitora-la ou alterar o estado de uma zona ja
cadastrada. Devem ser passados o c6digo da zona e o seu estado. Quando o estado da
zona estd em alerta ou invasao deve ser passado o cédigo do arquivo de video que sera

criado.

Atores ServerPHP

B.2. Diagramas de sequéncia

63

Pré-condicgoes Zona nao cadastrada ou zona cadastrada com um estado diferente do

estado enviado

Pés-condicgoes Zona cadastrada e com novo estado

Fluxo basico

1. O sistema recebe um post do tipo carregarZonas.

2. O sistema recebe os dados do post: nimero de zonas, codigo da zona, codigo

do arquivo video.

3. O sistema verifica se a zona ja existe.

4. O sistema cadastra a nova zona.

5. Se o estado for 2 (alerta) ou 3 (invasao). O sistema cadastra o arquivo de video.

6. O sistema registra o evento.

Fluxo alternativo A

1. No passo 3 do Fluxo Bésico, caso a zona ja exista.

2. O sistema atualiza o estado da zona.

3. O sistema vai para o estado 5 do Fluxo Basico.

B.2 Diagramas de sequéncia

tuncionarioContrallaraction Sarve rRequeas|

{}

sarvarcamag arfon as()

carragarfonasCompanantrun

salvarZona

alualizarZona

cadastrarVideo

ragistrarEventa

-

-

Yy

-

—_—————— e — [t —_—_—_- —_- —_ ————

Yy

-
-

Figura 18 — Diagrama de sequéncia do caso carregar zonas

-

64

APENDICE B. Diagramas do sistema PHP

tuncionarioCaontrallaraction Download|()

downloadCompanant:runf}

doawnloadCompaonant:criaryideoT ampaoran g}

Figura 19 — Diagrama de sequéncia do caso fazer download

tuncionarioCaontroller:action Lagin|(}

laginViaw

tuncionarioContrallar:action SubmitLo girf

(

sarvarvarnficarLogin()

varificarLoginCompanantrun

sarvarra gistrarEva nta)|

sgemaliaw

Yy

Yy

Yy

Figura 20 — Diagrama de sequéncia do caso fazer login

B.3. Diagrama de classes 65

tuncionanoaCantrallaraction SarvarRegqueas]() sarvaranviarimagam anviarlm age mCom pon antirunf) [an viarlm age mCom pon ent:p racessarim agam{(}

A |

Y

A |

————————ee e[—— e —]

Figura 21 — Diagrama de sequéncia do caso enviar imagem

B.3 Diagrama de classes

O diagrama de classes demonstra a estrutura estatica das classes de um sistema
e suas relagoes que servem de modelo para os objetos. Através deste diagrama podemos
mais uma vez perceber a interacao dos elementos da estrutura MVC-Component adotada

para esse sistema.

B.4 Diagrama entidade relacao

Utilizamos a técnica de abordagem Entidade-Relacionamento que é considerada
como um padrao para a modelagem conceitual. Essa técnica procura representar de forma
abstrata os dados que serao armazenados no banco de dados tendo como base o conceito
de que o mundo é formado por um conjunto de objetos chamados de entidades e seus

relacionamentos entre si.

Este modelo de dados dara origem ao script SQL que utilizamos para construir
a nossa estrutura de dados e para ilustrar esse modelo de dados vamos usar um modelo

diagramatico chamado Diagrama Entidade-Relacionamento.

66

APENDICE B. Diagramas do sistema PHP

Component

component() wvoid
model() :void

Model

db
tabela

System

action
controller
explode
pamams
ud

+ + + + o+

delete() wvoid
insert() ~woid
read() :void
sql() woid
update() Z".HJiF

R T S S S A N T

uni) woid
sParams() :void
=t Action() wvoid
=tConnection() :void
=tController() ~woid
wtExplode() :woid
wtMetode() wvoid
stModule() woid
stUd() wvoid
=tUTF8() :woid
testAction() :void
testController) woid

Config

db

-

define() void

Controller

+ + + +

com ponent) wvoid
model() void
redirect]) wvoid
view() wvoid

Figura 22 — Diagrama de classes da Framework

B.4. Diagrama entidade relacao

67

Views

=interfacas
visualizarZonaView

sarver

+ carregaronas() void
+ anviarlmagami() :void
+ ragistrarEvanta() :void
+ varificarLogin(} :void

Companants

carregarZonasComponent

+ run(} waid

enviarimagemComponent

+ floAmay() waid

+ loAmay() wvaid -
+ validar(} woid

validar) wai

+ walidar} vai

+ validad) vai

\\\
e + processarimagam() void
e + runf} woid
=interacas
sls tama View funcionarioController
verificarL oginComponent
+ acltionAcaolnvalidal) vaoid
+ acltionAcessoNegada() vaid + runf) void
- + actionAtualizarStatusfanaP HP{} vai -
interaces T~2% + actionControladorinvalidaf) void é-—-—-"”
listarEv entosView| + actionDownload() :woid
+ actionListarLagEventos() vaoid
+ actionLogin{} wvoid registrarEve ntaComponent
+ actionLogout() vaid
+ actionRenomearfonal) : + munf) void
=intarfaca: + actionServarRequest()
loginView + actionSubmitLogin{} waid
+ actionVisualizarSistama() wvaid
+ actionVisualizarZona() waoid
downloadComponent
I
] ,ﬁ + crar_video_tempaorara() woid
\ / + rn{} wvaid
' /
\ /
! /
\ /
\ /
'\\ 7
Madals
arquivo_videoModel log_eventos Model
funcionarioho del zonaModel
codigo codiga statusM odel acaoModal
codigo_funcionar o codigo_acaa codigo codiga
codigo_zona codigo_arquivo noma codiga codigo codiga_status
data cadigo_funcionari o sanha descricaon dascricag nomea
nama codigo_zona
+ floAmay + loAmay() vai + lofmray() wvai toArmay() vaid

validar(} void

Figura 23 — Diagrama de classes da aplicacao

APENDICE B. Diagramas do sistema PHP

68

e

obipoa
|

oBdEe

—_—

1

obipoo
oEde obipods
e

sOjUsAE DO

ouEUS Uy ofipo

euoz obipos
—_—

oapn onmbie

Buoz ol pos

te

0 EDLEE 8p

obipas

-
_ e
e
Bl uss
O ELDED LN

N

Figura 24 — Diagrama entidade relagao

69

APENDICE C - Descricdo do sistema PHP

C.0.1 Framework

Desenvolver software em PHP puro é uma tarefa cansativa e demorada, por isso
com o objetivo de tornar o desenvolvimento dindmico optamos por desenvolver um fra-

mework sob os moldes do padrao MVC. As caracteristicas desse framework sao:

e Orientado a objetos

Utilizada o padrao MVC

Faz tratamento de url

e Possui acesso ao banco de dados simplificado (create, read, update, delete)

Conecta-se com varios bancos de dados simultaneamente

O framework possui os seguintes arquivos:

Config.php Esse arquivo é responsavel por definir diretérios importantes como o dire-
torio raiz da aplicacao e o diretério de estilos utilizados. Ele também é responsavel

pela configuragao de acesso (host,senha,dbname) ao banco de dados utilizado.

Component.php Esse arquivo contém a superclasse de todos os componentes da aplica-
¢do, ela contém fung¢des que sao comumente usadas em qualquer componente como

as fungoes incluir model, component.

Controller.php Esse arquivo contém a superclasse de todos os controladores da aplica-
¢do, ela contém fungoes que sdo comumente usadas em qualquer controle como as

funcdes incluir model, component, view e redirecionar paginas.

Model.php Esse arquivo contém a superclasse de todos os modelos da aplicagao, ela
contém fungoes que sao comumente usadas em qualquer modelo como as fungoes de

acesso ao banco de dados create, read, update e delete.

System.php Esse arquivo contém a classe que gerencia o sistema, ele é responsavel
tanto por identificar na url o controlador e a acdo que devem ser chamados, como
também organizar os parametros passados via url. Essa classe faz consisténcia dos
dados testando se o controlador e a acao sao validos, seta a codificagdo como UTFS8

e ainda instancia a conexao com os banco de dados definidos em Config.php.

70 APENDICE C. Descrigio do sistema PHP

C.0.2 Models

A partir dos diagramas de entidade relagdo sdo definidos os modelos que serao
usados para acesso ao banco de dados, esses modelos possuem como variaveis as colunas
de cada tabela e uma funcao validar() responsavel por fazer a consisténcia dos dados antes
de envia-los ao banco. Todos herdam a classe Model.php e porisso as suas fungoes.

e arquivo_ videoModel.php
e zonaModel.php

e log eventosModel.php

e acaoModel.php

e statusModel.php

e funcionarioModel.php

C.0.3 Views

As views do sistema sao a porta de comunica¢ao com o usudrio, a interface homem
maquina. Através delas enviaremos a informacao do estado do sistema ao funcionario da
seguranga e receberemos informacgao dele apos a sua verificagao. O sistema terd quatro

views desenvolvidas com o auxilio do template Slate Admin (ADMIN, 2013). Sao elas:

e loginView.php (figura 25)

Login

Figura 25 — View da pagina de Login

71

Sistema de seguranca

Sistema de seguranca

= Listar Log de Eventos

© Departamento de Engenharia Mecatrinica e de Sistemas Mecénicos da Escola Poltécnica da USP.

Figura 26 — View da pagina do sistema

e sistemaView.php (figura 26)
e visualizarZonaView.php

e listarEventosView.php

C.0.4 Controllers

O controlador do sistema é responsavel por intermediar as operagoes do usuario
com a logica e consultas do banco de dados. Para esse sistema criamos o funcionarioCon-

troller.php que possui as seguintes fungoes:

actionAtualizarStatusZonaPHP ($params) Fungdo que recebe um cédigo de zona e

um codigo de status e altera o status da zona no banco de dados.

actionVisualizarSistema($params) Fungao responséavel por apresentar a view de vi-

sualizacao do sistema.

actionDownload ($params) Funcao que recebe o cédigo do arqui_video e inicia o

download.

actionListarLogEventos($params) Fungdo que busca a lista de eventos e chama a

view responsavel por sua exibicao

actionLogin($params) Funcdo que chama a view com o formulario de login.

72 APENDICE C. Descrigio do sistema PHP

actionLogout($params) Funcdo que encerra a sessao e redireciona para a pagina de

login.

actionRenomearZona($params) Funcao que recebe o c6digo da zona e o novo nome

entao faz a alteracdao no banco de dados.
actionServerRequest($params) Fungio que faz as chamadas de servidor.
actionAcaolnvalida($params) Funcio que exibe o erro de agao invélida.

actionControladorInvalido($params) Funcao que exibe o erro de controlador invé-
lido.

actionAcessoNegado($params) Fungao que exibe o erro de acesso negado.

actionSubmitLogin($params) Fungao que recebe as informagoes de login e verifica

sua validade.
actionVisualizarZona($params) Funcao que recebe o c6digo da zona, busca as infor-

macoes da zona e chama a view de exibicgao.

C.0.5 Components

Os componentes sao usados para isolar a logica do controlador e deixa-lo somente

com a func¢ao de direcionamento. Com esse fim foram criados:

class verificarLoginComponent Classe responsavel por verificar as informacoes de lo-

gin.
class registrarEventoComponent Classe responsavel por registrar um evento.
class enviarlmagemComponent Classe responsavel por receber as imagens
class downloadComponent Classe responsavel por executar a rotina de download.

class carregarZonasComponent Classe responsavel por registrar todas as zonas que

estao sendo monitoradas.

C.0.6 Server

O server é um arquivo que contém as fungoes que realizam os servicos do sistema.

Sao elas:

carregarZonas($params) Fungdo que recebe uma chamada ros e cadastra as zonas

que estao sendo monitoradas no bando de dados.

73

enviarlmagem ($params) Fungio que recebe a imagem e salva no servidor.

registrarEvento($codigo_ zona, $codigo__arquivo, $codigo__acao,

$codigo__funcionario, $conexao) Fungao que registra o evento ocorrido.

verificarLogin($usuario, $senha) Funcao que recebe os dados de login e verifica a

validade deles.

75

APENDICE D - Algoritmos para detecc3o de

INVasao

D.1 Comparacao de frames subsequentes

Neste projeto utilizaremos um simples algoritmo que compara imagens subsequen-
tes pixel a pixel. Se um pixel localizado na mesmo posi¢do em imagens subsequentes é

diferente, significa que ha algo diferente na imagem, ou seja, algo se movimentando.

O problema deste método é que pequenas alteracoes e ruidos poderiam ser tomados
como movimentos e consequentemente invasoes. Por exemplo, a oscilacao de luminosidade
no ambiente altera levemente o pixel e, portanto, é considerado um pixel diferente. Para
sanar este problema foi aplicado a todas as imagens recebidas pelo agente um filtro binario,
que transforma todos os pixels em 1 ou 0. Desta maneira pequenos ruidos e variagoes de
luminosidade teriam o mesmo valor e ndo influenciariam no resultado final. Além disso,
para fazer a comparacao das imagens subsequentes o processo torna-se apenas a aplicagao

do operador l6gico XOR pixel a pixel.

A partir da imagem original da figura 27, foi obtido a partir deste algoritmo o

resultado observado na figura 28.

Figura 27 — Imagem original

Para analisar se houve ou nao uma invasao observamos a quantidade de pixels

diferentes em imagens subsequentes. Se existe mais de 1% de pixels diferentes é conside-

76 APENDICE D. Algoritmos para detecgio de invasdo

Figura 28 — Resultado da comparacao de frames subsequentes a partir da imagem original
da figura 27

rado que had um movimento estranho na imagem e um publisher deste agente envia uma

mensagem de status avisando que houve a deteccao de uma invasao nesta camera.

D.2 Comparacao com o primeiro frame

Outro algoritmo que poderia ser utilizado para a deteccao de invasdes poderia ser
a comparacao com o primeiro frame captado, ou seja, a imagem quando é sabido que
nao ha movimentacao na area e ela se encontra em um estado de seguranca. Além disso,
este algoritmo tem um ponto positivo, pois poderia ser utilizado para detectar objetos

estranhos e iméveis na imagem.

Utilizando novamente a imagem original 27 é utilizado o algoritmo em questao e

o resultado pode ser visualizado na figura 29.

O resultado obtido é, em alguns casos, melhor do que o obtido pela comparacao de
frames subsequentes. No entanto, este algoritmo é extremamente sensivel, pois pequenas
diferencas na imagem podem ser consideradas diferentes e detectadas como invasao apesar
de nao ser absolutamente nada. Um exemplo deste problema pode ser observado através

da imagem original 30 e o resultado da comparagao com o primeiro frame na figura 31.

Como pode ser observado, nesta figura é detectado uma diferenga na imagem,
que, na verdade, nao existe. Esta diferenca pode ser causado por pequenas diferencas de
luminosidade e/ou outras condigdes do espago. Desta maneira, este algoritmo nao seria
utilizavel em um ambiente aberto, onde haveria diferenca de luminosidade entre o dia e a

noite, por exemplo.

D.3. Contornos de imagens 7

Figura 29 — Resultado da comparagao da imagem original da figura 27 com o primeiro
frame

Figura 30 — Imagem original

D.3 Contornos de imagens

Uma solugao melhor para detectar a invasao de um ambiente seriam a deteccao de
bordas na imagem eliminando o fundo da imagem. Com esta func¢ao seria facil detectar
movimento no ambiente. Existem func¢des prontas para isso no OpenCV, por exemplo, a

funcao findContours. O resultado deste algoritmo pode ser visto nas figuras 32 e 33.

Os resultados obtidos nessas imagens foram obtidas no desenvolvimento do pro-
grama fora do ambiente ROS. No entanto, ao utilizar esta fungao dentro do ambiente

ROS houve um problema de compatibilidade entre o OpenCV e o ROS e, por isso, esta

78 APENDICE D. Algoritmos para detecgio de invasdo

Figura 31 — Resultado da comparagao da imagem original da figura 30 com o primeiro
frame

Figura 32 — Primeiro resultado do algoritmo para encontrar os contornos de imagens

solucao nao pode ser utilizada.

D.3. Contornos de imagens

79

Figura 33 — Segundo resultado do algoritmo para encontrar os contornos de imagens

81

APENDICE E - Documentacio projeto ROS

My Project

Generated by Doxygen 1.7.6.1

Tue Nov 5 2013 00:00:35

Contents

1 Class Index

1.1 ClassList e

2 Class Documentation

2.1 Communicator Class Reference
2.1.1 Detailed Description L.
2.1.2 Constructor & Destructor Documentation.

21.21 Communicator
21.22 ~Communicator
2.1.3 Member Function Documentation
2.1.3.1 fixPercentEncoding
2132 getlmageb64
2133 run ...
2134 sendlmage

2.2 InterpreterClassReference,
2.2.1 Detailed Description o o
2.2.2 Constructor & Destructor Documentation.

2221 Interpreter
2222 ~interpreter
2.2.3 Member Function Documentation
2.23.1 imageCallback,

2.3 MonitorClass Reference
2.3.1 Detailed Description
2.3.2 Constructor & Destructor Documentation.

2321 Monitor

2322 ~Monitor

i CONTENTS
2.4 SensorMonitor Class Reference 7
2.41 Detailed Description L oL 7
2.4.2 Constructor & Destructor Documentation. 8
2421 SensorMonitor 8

2422 ~SensorMonitor oL 8

2.4.3 Member Function Documentation 8
2431 fixDigits. 8

2432 getVideoCode, 8

2433 getZoneState. 8

2434 imageCallback 9

2435 statusCallback, 9

2436 updateState L. 9

Generated on Tue Nov 5 2013 00:00:35 for My Project by Doxygen

Chapter 1

Class Index

1.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Communicator e
Interpreter e
Monitor e
SensorMonitor L L e

Class Index

Generated on Tue Nov 5 2013 00:00:35 for My Project by Doxygen

Chapter 2

Class Documentation

2.1 Communicator Class Reference

Public Member Functions

« Communicator ()
» ~Communicator ()
* void run ()

Protected Member Functions

« void fixPercentEncoding (std::string &str)

+ int sendlmage (std::string zone, std::string video, std::string frame, std::string im-
age)

+ std::string getlimageb64 (std::string image_name)

2.1.1 Detailed Description

Agent Communicator analyzes if there is an jpg image saved in the images directory. If
it does, the agent send the image to the server via an HTTP request

2.1.2 Constructor & Destructor Documentation
2.1.2.1 Communicator::Communicator() [inline]

Constructor of class Communicator

2.1.22 Communicator::~Communicator() [inline]

Destructor of class Communicator

4 Class Documentation

2.1.3 Member Function Documentation

2.1.3.1 void Communicator::fixPercentEncoding (std::string & sir) [inline,
protected]

Replace special characters with percent encoding

Parameters

\ str | String to be fixed

2.1.3.2 std::string Communicator::getimageb64 (std::string image_name)
[inline, protected]

Encode image to base64

Parameters

\ _image | Image to be encoded

Returns

Encoded string of the image

2.1.3.3 void Communicator::run() [inline]

Run the agent communicator in order to analyze images in directory and send found
images

2.1.3.4 int Communicator::sendimage (std::string zone, std::string video, std::string
frame, std::stringimage) [inline, protected]

Send image encoded in base64 to the server

Parameters

zone | Number of the zone where the sensor is

video | Unique identifier from video

frame | Number of the frame this image correspond to

image | Image encoded in base64

Returns

State of the zone from the server

The documentation for this class was generated from the following file:

Generated on Tue Nov 5 2013 00:00:35 for My Project by Doxygen

2.2 Interpreter Class Reference 5

+ communicator.cpp

2.2 Interpreter Class Reference

Public Member Functions
* Interpreter (int zone_number, int interpreter_number)
» ~lInterpreter ()

Protected Member Functions

« void imageCallback (const sensor_msgs::ImageConstPtr &msg)

Protected Attributes

+ ros::NodeHandle nh_
+ image_transport::lmageTransport it_
 image_transport::Subscriber image_sub_
* ros::Publisher status_pub_
* cvi:Mat _mat
2.2.1 Detailed Description
Agent Interpreter is responsible for getting the images feed from the corresponding

sensor, analyzing it and sending a message feed containing a status, which is true if
there is something strange in the image, f.i. an intruder, and false if everything is normal

2.2.2 Constructor & Destructor Documentation
2.2.2.1 Interpreter::Interpreter (int zone_number, int interpreter_.number) [inline]
Construtor of class Interpreter

Parameters

zone_- | Number of the zone the interpreter will act on
number

interpreter_- | Number of the new interpreter
number

2.2.2.2 Interpreter::~Interpreter() [inline]

Destructor of class Interpreter

Generated on Tue Nov 5 2013 00:00:35 for My Project by Doxygen

6 Class Documentation

2.2.3 Member Function Documentation

2.2.3.1 void Interpreter::imageCallback (const sensor_msgs::ImageConstPtr & msg)
[inline, protected]

Callback function, that is called when the sensor sends an image

Parameters

\ msg \ Image sent by the sensor

The documentation for this class was generated from the following file:

* my_subscriber.cpp

2.3 Monitor Class Reference

Public Member Functions
» Monitor (int zone_number, int interpreter_number, int sensor_number)
» ~Monitor ()

Protected Attributes

* ros::NodeHandle nh_

* ros::Subscriber status_sub_ [10]

» image_transport::lmageTransport it_

» image_transport::Subscriber image_sub_ [10]

2.3.1 Detailed Description

Class Monitor

Agent Monitor converges signals from all sensors and interpreters in a zone and creates
one SensorAgent for each pair of agents sensor and interpreter

2.3.2 Constructor & Destructor Documentation

2.3.21 Monitor::Monitor (int zone_number, int interpreter_number, int sensor_number)
[inline]

Construtor of class Monitor

Generated on Tue Nov 5 2013 00:00:35 for My Project by Doxygen

2.4 SensorMonitor Class Reference 7

Parameters

zone_- | Number of the zone the monitor will control
number

interpreter_- | Number of interpreters running in this zone
number

sensor- | Number of sensors running in this zone
Number

2.3.2.2 Monitor::~Monitor() [inline]

Destructor of class Monitor

The documentation for this class was generated from the following file:

* monitor.cpp

2.4 SensorMonitor Class Reference

Public Member Functions

» SensorMonitor (int _zone_number, int _sensor_number)

» ~SensorMonitor ()

+ void imageCallback (const sensor_msgs::ImageConstPtr &msQ)
« void statusCallback (const std_msgs::Bool status)

Protected Member Functions

+ void updateState (int zone, int sensor, int state, std::string video)
* int getZoneState (int zone)

» std::string getVideoCode ()

« std::string fixDigits (int input, int number_digits)

Protected Attributes

* int zone_number

* int sensor_number

* int zone_state

+ int sensor_state

« int frame_count

« std::string video_code

2.4.1 Detailed Description

Agent SensorMonitor groups signals from one sensor and its corresponding interpreter
and responds to an invasion in a zone by saving the corresponding image to jpg file

Generated on Tue Nov 5 2013 00:00:35 for My Project by Doxygen

8 Class Documentation

2.4.2 Constructor & Destructor Documentation

2.4.2.1 SensorMonitor::SensorMonitor (int _zone_number, int _sensor_number)
[inline]

Construtor of class SensorMonitor

Parameters

zone_- | Number of the zone the monitor is controlling
number

sensor- | Number of the sensor in this zone
Number

24.22 SensorMonitor::~SensorMonitor() [inline]

Destructor of class SensorMonitor

2.4.3 Member Function Documentation

2.4.3.1 std::string SensorMonitor::fixDigits (int input, int number_digits) [inline,
protected]

Get integer with the wanted numbers of digits

Parameters

input | Integer to transform

number_- | Desired number of digits
digits

Returns

String containing integer with the number of digits desired

2.4.3.2 std::string SensorMonitor::getVideoCode() [inline, protected]

Create an unique identifier for a video of a camera in a zone

Returns

Unique identifier

2.4.3.3 int SensorMonitor::getZoneState (intzone) [inline, protected]

Get the zone state from the server

Generated on Tue Nov 5 2013 00:00:35 for My Project by Doxygen

2.4 SensorMonitor Class Reference 9

Parameters
\ zone | Number of the zone where the sensor is \

Returns

State of the zone from the server

2.4.3.4 void SensorMonitor::imageCallback (const sensor_msgs::ImageConstPtr & msg
) [inline]

Callback function, that is called when the sensor sends an image

Parameters

\ msg \ Image sent by the sensor

2.4.3.5 void SensorMonitor::statusCallback (const std_msgs::Bool status)
[inline]

Callback function, that is called when the interpreter sends an status message

Parameters
\ status \ Whether the interpreter identified someone in the image or not

2.4.3.6 void SensorMonitor::updateState (int zone, int sensor, int state, std::string video
) [inline, protected]

Update state of the sensor in the server through an HTTP request

Parameters

zone | Number of the zone where the sensor is
sensor | Number of the sensor in this zone

state | State of the sensor

video | Unique identifier from video

The documentation for this class was generated from the following file:

* monitor.cpp

Generated on Tue Nov 5 2013 00:00:35 for My Project by Doxygen

95

APENDICE F — Documentac3o projeto PHP

My Project

Generated by Doxygen 1.8.5

Thu Nov 7 2013 12:28:21

Contents

1 Hierarchical Index

1.1 Class Hierarchy

2 Data Structure Index

2.1 Data Structures

3 Data Structure Documentation

3.1 acaoModel Class Reference e
3.1.1 Detailed Description
3.1.2 Member Function Documentationo L o
3.1.21 HOArray

3.1.22 validar

3.2 arquivo_videoModel Class Reference
3.2.1 Detailed Description e
3.2.2 Member Function Documentation
3.22.1 HOArray e

3.222 validar

3.3 carregarZonasComponent Class Reference
3.3.1 Detailed Description
3.3.2 Constructor & Destructor Documentation.o
3.3.21 __construct L

3.3.3 Member Function Documentation Lo
3331 rUn L e

3.4 ComponentClass Reference e
3.4.1 Detailed Description
3.4.2 Member Function Documentation Lo
3.421 component

3.422 model ... e

3.5 Controller Class Reference
3.5.1 Detailed Description e
3.5.2 Member Function Documentation L
3.5.2.1 component

w

© © © 0 0 0 0 o0 00 N N N N N N N oo o o o oo g g a

iv CONTENTS
3522 model 9

3523 redireCt L 9

3524 VIeW ... e e e 9

3.6 downloadComponent Class Reference 10
3.6.1 Detailed Description e 10
3.6.2 Constructor & Destructor Documentation oL 10
3.6.2.1 __construct e e e e 10

3.6.3 Member Function Documentation Lo 10
3.6.3.1 rUN L 10

3.7 enviarlmagemComponent Class Reference oo 11
3.7.1 Detailed Description 11
3.7.2 Constructor & Destructor Documentation.o 11
3.7.21 _construct e e e e 11

3.7.3 Member Function Documentation o 11
3.7.3.1 ruUn Lo e e 11

3.8 funcionarioController Class Reference 12
3.8.1 Detailed Description 12
3.8.2 Constructor & Destructor Documentation.o Lo 12
3.8.21 _construct e e e e e 12

3.8.3 Member Function Documentation oL 12
3.8.3.1 actionAcaolnvalida 12

3.8.3.2 actionAcessoNegado 13

3.8.3.3 actionAtualizarStatusZonaPHP oL L o 13

3.8.3.4 actionControladorinvalido 13

3.8.35 actionDownload 13

3.8.3.6 actionListarLogEventos Lo 13

3.8.3.7 actionLogin. L 13

3.8.3.8 actionLogout 13

3.8.3.9 actionRenomearZona 13

3.8.3.10 actionServerRequest 13

3.8.3.11 actionSubmitLogin L 14

3.8.3.12 actionVisualizarSistema o 14

3.8.3.13 actionVisualizarZona e 14

3.9 funcionarioModel Class Reference e 14
3.9.1 Detailed Description 14
3.9.2 Member Function Documentation 15
3.9.21 HOArray e 15

3.9.22 validar 15

3.10 log_eventosModel Class Reference e 15
3.10.1 Detailed Description 15

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

CONTENTS v

3.11

3.12

3.13

3.14

3.15

3.16

3.10.2 Member Function Documentation 16
3.10.2.1 HOArray 16
3.10.2.2 wvalidar 16

Model Class Reference e 16

3.11.1 Detailed Description e 16

3.11.2 Constructor & Destructor Documentation L. 17
3.11.21 __construct e e e 17

3.11.3 Member Function Documentation Lo 17
3.11.3.1 delete 17
311832 insert L 17
311833 read 17
31134 sql 17
3.11.3.5 wupdate 17

registrarEventoComponent Class Reference oL 18

3.12.1 Detailed Description L 18

3.12.2 Constructor & Destructor Documentation. 18
3.12.2.1 __construct e e e e 18

3.12.3 Member Function Documentationo 18
31231 run L. e 18

statusModel Class Reference 19

3.13.1 Detailed Description L 19

3.13.2 Member Function Documentation L 19
3.13.2.1 HOArray 19
3.13.2.2 wvalidar 19

System Class Reference e 20

3.14.1 Detailed Description L 20

3.14.2 Constructor & Destructor Documentation. 20
3.14.21 __construct L 20

3.14.3 Member Function Documentation 20
31431 run L. e e e e e 20

verificarLoginComponent Class Reference 20

3.15.1 Detailed Description e 20

3.15.2 Constructor & Destructor Documentation. 21
3.15.2.1 __construct L e e e e 21

3.15.3 Member Function Documentation o 21
353.1 run Lo 21

zonaModel Class Reference L 21

3.16.1 Detailed Description 22

3.16.2 Member Function Documentation L L 22
3.16.2.1 H0Array e 22

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

vi CONTENTS
3.16.2.2 validar e e e e 22
Index 23

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

Chapter 1

Hierarchical Index

1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Component L e e e 8
carregarZonasComponent L L e e e e 7
downloadComponent e 10
enviarlmagemComponent L e e e 11
registrarEventoComponent L 18
verificarLoginComponent L 20

Controller e e 8
funcionarioController L 12

Model e e 16
acaoModel e e e 5
arquivo_videoModel 6
funcionarioModel L 14
log_eventosModel L 15
statusModel L e e 19
zonaModel L 21

Hierarchical Index

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

Chapter 2

Data Structure Index

2.1 Data Structures

Here are the data structures with brief descriptions:

acaoModel . . . L 5
arquivo_videoModel L 6
carregarZonasComponent L e e e e 7
ComponeNnt . . . L L e e 8
Controller o e 8
downloadComponent e e e e 10
enviarlmagemComponent L e e e 11
funcionarioController L e e 12
funcionarioModel e 14
log_eventosModel L L 15
Model e e e 16
registrarEventoComponent L e 18
statusModel e 19
System . L e 20
verificarLoginComponent 20

zonaModel L e 21

Data Structure Index

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

Chapter 3

Data Structure Documentation

3.1 acaolModel Class Reference

Inheritance diagram for acaoModel:

Model

acaoModel

Public Member Functions
« validar ()
* toArray ()

Data Fields
- $ tabela = "acao"

« $_codigo
» $_descricao

Additional Inherited Members

3.1.1 Detailed Description

Classe responsavel pelo acesso a tabela "acao" do banco de dados

Definition at line 5 of file acaoModel.php.

3.1.2 Member Function Documentation
3.1.2.1 toArray()

Funcao que transforma as variaveis de um objeto tipo Model num array.

Definition at line 18 of file acaoModel.php.

6 Data Structure Documentation

3.1.2.2 validar()

Funcéo que verifica se os dados estdo prontos para ser inseridos no banco de dados
Definition at line 13 of file acaoModel.php.

The documentation for this class was generated from the following file:

» C:/xampp/htdocs/sistema_de_seguranca/app/models/funcionario/acaoModel.php

3.2 arquivo_videoModel Class Reference

Inheritance diagram for arquivo_videoModel:

Model

arquivo_videoModel

Public Member Functions

« validar ()
+ toArray ()

Data Fields

« $_tabela = "arquivo_video"
« $_codigo

» $_codigo_funcionario

* $_codigo_zona

- $ _data

* $ nome

Additional Inherited Members

3.2.1 Detailed Description

Classe responsavel pelo acesso a tabela "aruivo_video" do banco de dados

Definition at line 5 of file arquivo_videoModel.php.

3.2.2 Member Function Documentation
3.22.1 toArray()

Fungéo que transforma as variaveis de um objeto tipo Model num array.

Definition at line 21 of file arquivo_videoModel.php.

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

3.3 carregarZonasComponent Class Reference

3.2.2.2 validar()

Funcéo que verifica se os dados estao prontos para ser inseridos no banco de dados
Definition at line 15 of file arquivo_videoModel.php.

The documentation for this class was generated from the following file:

» C:/xampp/htdocs/sistema_de_seguranca/app/models/funcionario/arquivo_videoModel.php

3.3 carregarZonasComponent Class Reference

Inheritance diagram for carregarZonasComponent:

Component

carregarZonasComponent

Public Member Functions
» __ construct ()

e run ()

Additional Inherited Members

3.3.1 Detailed Description

Classe responsavel por registrar todas as zonas que estdo sendo monitoradas.

Definition at line 4 of file carregarZonasComponent.php.

3.3.2 Constructor & Destructor Documentation
3.3.21 _ construct()

Construtor da classe carregarZonasComponent

Definition at line 10 of file carregarZonasComponent.php.

3.3.3 Member Function Documentation
3331 run()

Fungéo que recebe o post com as informagdes da zona e as registra no banco de dados.
Definition at line 16 of file carregarZonasComponent.php.

The documentation for this class was generated from the following file:

» C:/xampp/htdocs/sistema_de_seguranca/app/components/funcionario/carregarZonasComponent.php

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

8 Data Structure Documentation

3.4 Component Class Reference

Inheritance diagram for Component:

| Component |

1
I | I

carregarZonasComponent | | downloadComponent | | enviarlmagemComponent | |registrarEvemoComponem| | verificarLoginComponent

Protected Member Functions

* model ($nome)
« component ($nome)

3.4.1 Detailed Description

Classe base dos componentes

Definition at line 4 of file Component.php.

3.4.2 Member Function Documentation
3.4.2.1 component($nome) [protected]

Fungéo que inclui um componente para ser usado no componente

Parameters

$nome \ nome do componente

Definition at line 14 of file Component.php.

34.22 model($nome) [protected]

Fungéo que inclui um model para ser usado no componente

Parameters

$nome | nome do model

Definition at line 8 of file Component.php.

The documentation for this class was generated from the following file:

» C:/xampp/htdocs/sistema_de_seguranca/system/Component.php

3.5 Controller Class Reference

Inheritance diagram for Controller:

Controller

funcionarioController

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

3.5 Controller Class Reference

Protected Member Functions
* view ($nome, $params=array(), $dados=array())
* model ($nome)
+ component (fnome)
+ redirect ($controller, $action, $params)

3.5.1 Detailed Description

Classe base dos controladores

Definition at line 4 of file Controller.php.

3.5.2 Member Function Documentation
3.5.2.1 component($nome) [protected]

Fungéo que inclui um componente para ser usado no controlador

Parameters

$nome \ nome do componente

Definition at line 22 of file Controller.php.

35.22 model($nome) [protected]

Fungéo que inclui um model para ser usado no controlador

Parameters

$nome | nome do model

Definition at line 16 of file Controller.php.

3.5.2.3 redirect(S$controller, $action, $params) [protected]

Fungao que redireciona para uma nova pagina.

Parameters

$controller | nome do controlador

$action | nome da acédo

$params | parametros que serao passados via url

Definition at line 30 of file Controller.php.

3.5.24 view($nome, $params=array (), $dados=array ()) [protected]

Fungéo que inclui o html de uma view

Parameters

$nome | nome da view

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

10

Data Structure Documentation

$params | contetido da url

$dados | informacgdes a serem passadas para a view.

Definition at line 10 of file Controller.php.

The documentation for this class was generated from the following file:

» C:/xampp/htdocs/sistema_de_seguranca/system/Controller.php

3.6 downloadComponent Class Reference

Inheritance diagram for downloadComponent:

Component

T

’ downloadComponent ‘

Public Member Functions
- _ construct ($codigo_arquivo)

e run ()

Additional Inherited Members

3.6.1 Detailed Description

Classe responsavel por executar a rotina de download.

Definition at line 4 of file downloadComponent.php.

3.6.2 Constructor & Destructor Documentation
3.6.2.1 _ construct ($codigo_arquivo)

Construtor da classe downloadComponent

Parameters

] $codigo_arquivo | codigo do arquivo que sera baixado

Definition at line 12 of file downloadComponent.php.

3.6.3 Member Function Documentation
3.6.3.1 run()

Funcgéo que cria o video temporario e for¢ca o download do video.

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

3.7 enviarimagemComponent Class Reference 11

See Also

criar_video_temporario($temp, $codigo_arquivo).

Definition at line 30 of file downloadComponent.php.

The documentation for this class was generated from the following file:

» C:/xampp/htdocs/sistema_de_seguranca/app/components/funcionario/downloadComponent.php

3.7 enviarimagemComponent Class Reference

Inheritance diagram for enviarimagemComponent:

I Component |

T

| enviarlmagemComponent l

Public Member Functions

» __construct ()
* run ()

Additional Inherited Members

3.7.1 Detailed Description

Classe responsavel por receber as imagens

Definition at line 4 of file enviarlmagemComponent.php.

3.7.2 Constructor & Destructor Documentation
3.7.2.1 _ construct()

Construtor da classe enviarimagemComponent

Definition at line 10 of file enviarimagemComponent.php.

3.7.3 Member Function Documentation
3.731 run()

Fungéo que recebe o post da imagem e a salva no servvidor

See Also

processarimagem($data, $arquivo, $frame)

Definition at line 40 of file enviarimagemComponent.php.

The documentation for this class was generated from the following file:

» C:/xampp/htdocs/sistema_de_seguranca/app/components/funcionario/enviarimagemComponent.php

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

12 Data Structure Documentation

3.8 funcionarioController Class Reference

Inheritance diagram for funcionarioController:

Controller

funcionarioController

Public Member Functions

» __construct ()

« actionAtualizarStatusZonaPHP ($params)
« actionVisualizarSistema ($params)
+ actionDownload ($params)

« actionListarLogEventos ($params)

« actionLogin ($params)

- actionLogout ($params)

« actionRenomearZona ($params)

« actionServerRequest ($params)

« actionAcaolnvalida ($params)

« actionControladorInvalido ($params)
« actionAcessoNegado ($params)

« actionSubmitLogin ($params)

+ actionVisualizarZona ($params)

Additional Inherited Members

3.8.1 Detailed Description

Classe responsavel por gerenciar as agdes do funcionario e fazer chamadas de servidor

Definition at line 5 of file funcionarioController.php.

3.8.2 Constructor & Destructor Documentation
3.8.21 _ construct()

Construtor da classe funcionarioController

See Also

validaAcesso()

Definition at line 12 of file funcionarioController.php.

3.8.3 Member Function Documentation
3.8.3.1 actionAcaolnvalida ($params)

Fungéo que exibe o erro de agéo invalida.

Definition at line 259 of file funcionarioController.php.

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

3.8 funcionarioController Class Reference

13

3.8.3.2 actionAcessoNegado ($params)

Fungéo que exibe o erro de acesso negado.

Definition at line 269 of file funcionarioController.php.

3.8.3.3 actionAtualizarStatusZonaPHP ($params)

Fungéo que recebe um cddigo de zona e um codigo de status e altera o status da zona no banco de dados.

Definition at line 104 of file funcionarioController.php.

3.8.3.4 actionControladorinvalido ($params)

Funcéo que exibe o erro de controlador invalido.

Definition at line 264 of file funcionarioController.php.

3.8.3.5 actionDownload ($params)

Fungéo que recebe o codigo do arquivo_video e inicia o download.

Definition at line 151 of file funcionarioController.php.

3.8.3.6 actionListarLogEventos ($params)

Funcéo que busca a lista de eventos e chama a view responsavel por sua exibigao

Definition at line 163 of file funcionarioController.php.

3.8.3.7 actionLogin ($params)

Funcgéo que chama a view com o formulario de login.

Definition at line 196 of file funcionarioController.php.

3.8.3.8 actionLogout ($params)

Funcgéo que encerra a sessao e redireciona para a pagina de login.

Definition at line 201 of file funcionarioController.php.

3.8.3.9 actionRenomearZona ($params)

Funcéo que recebe o codigo da zona e o novo nome entéo faz a altera¢do no banco de dados.

Definition at line 207 of file funcionarioController.php.

3.8.3.10 actionServerRequest ($params)

Funcéo que faz as chamadas de servidor.

Definition at line 223 of file funcionarioController.php.

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

14 Data Structure Documentation

3.8.3.11 actionSubmitLogin ($params)

Fungao que recebe as informacdes de login e verifica sua validade.
Definition at line 274 of file funcionarioController.php.

3.8.3.12 actionVisualizarSistema ($params)

Funcao responsavel por apresentar a view de visualizagdo do sistema.
Definition at line 134 of file funcionarioController.php.

3.8.3.13 actionVisualizarZona ($params)

Fungéo que recebe o codigo da zona, busca as informagdes da zona e chama a view de exibigao.
Definition at line 287 of file funcionarioController.php.

The documentation for this class was generated from the following file:

» C:/xampp/htdocs/sistema_de_seguranca/app/controllers/funcionarioController.php

3.9 funcionarioModel Class Reference

Inheritance diagram for funcionarioModel:

Model

funcionarioModel

Public Member Functions
« validar ()
» toArray ()

Data Fields

+ $_tabela = "funcionario”
» $_codigo

« $ nome

- $_senha

Additional Inherited Members

3.9.1 Detailed Description

Classe responsavel pelo acesso a tabela "funcionario” do banco de dados

Definition at line 6 of file funcionarioModel.php.

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

3.10 log_eventosModel Class Reference 15

3.9.2 Member Function Documentation
3.9.2.1 toArray()

Funcao que transforma as variaveis de um objeto tipo Model num array.

Definition at line 20 of file funcionarioModel.php.

3.9.2.2 validar()

Funcéo que verifica se os dados estdo prontos para ser inseridos no banco de dados
Definition at line 14 of file funcionarioModel.php.

The documentation for this class was generated from the following file:

» C:/xampp/htdocs/sistema_de_seguranca/app/models/funcionario/funcionarioModel.php

3.10 log_eventosModel Class Reference

Inheritance diagram for log_eventosModel:

Model

log_eventosModel

Public Member Functions

« validar ()
» toArray ()

Data Fields

» $_tabela = "log_eventos"
+ $_codigo

* $_codigo_acao

* $_codigo_arquivo

* $_codigo_funcionario
* $_codigo_zona

Additional Inherited Members

3.10.1 Detailed Description

Classe responsavel pelo acesso a tabela "log_eventos" do banco de dados

Definition at line 5 of file log_eventosModel.php.

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

16 Data Structure Documentation

3.10.2 Member Function Documentation
3.10.2.1 toArray ()

Funcgéo que transforma as variaveis de um objeto tipo Model num array.

Definition at line 21 of file log_eventosModel.php.

31022 validar()

Funcéo que verifica se os dados estéao prontos para ser inseridos no banco de dados
Definition at line 15 of file log_eventosModel.php.

The documentation for this class was generated from the following file:

» C:/xampp/htdocs/sistema_de_seguranca/app/models/funcionario/log_eventosModel.php

3.11 Model Class Reference

Inheritance diagram for Model:

acaoModel | |arquivofvideoModel| | funcionarioModel | | log_eventosModel | | statusModel | | zonaModel

Public Member Functions

« __construct ($connection)
- insert (array $dados)
« read ($where=null, $last=null)
- update (array $dados, $where)
« delete ($where=null)
* sql ($sql)

Data Fields

+ $ tabela

Protected Attributes

+ $_db

3.11.1 Detailed Description

Classe base dos models responsavel pela comunicagdo com o banco de dados.

Definition at line 4 of file Model.php.

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

3.11 Model Class Reference

3.11.2 Constructor & Destructor Documentation
3.11.2.1 _ construct ($connection)

Construtor da classe Model $param $connection conexdo com o banco de dados

Definition at line 10 of file Model.php.

3.11.3 Member Function Documentation
3.11.3.1 delete ($where=null)

Funcéo que realiza a query DELETE

Parameters

$where \ condi¢céo para a exclusao

Definition at line 51 of file Model.php.

3.11.3.2 insert(array $dados)

Fungéo que realiza a query INSERT

Parameters

$dados \ dados que seréo inseridos no banco de dados.

Definition at line 16 of file Model.php.

3.11.33 read($where=null, $last=null)

Fungéo que realiza a query SELECT

Parameters

$where | condigao de busca.

Definition at line 25 of file Model.php.

3.11.34 sql($sql)

Fungdo que executa uma query qualquer.

Parameters

$sql \ codigo sgp da query que sera executada.

Definition at line 59 of file Model.php.

3.11.3.5 update (array $dados, $where)

Fungéo que realiza a query UPDATE

Parameters

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

18 Data Structure Documentation

$dados | dados que serdo atualizados

$where | condicdo para a atualizagio

Definition at line 40 of file Model.php.

The documentation for this class was generated from the following file:

» C:/xampp/htdocs/sistema_de_seguranca/system/Model.php

3.12 registrarEventoComponent Class Reference

Inheritance diagram for registrarEventoComponent:

Component

T

registrarEventoComponent

Public Member Functions

- _ construct ($codigo_zona, $codigo_arquivo, $codigo_acao, $codigo_funcionario, $conexao)
* run ()

Additional Inherited Members

3.12.1 Detailed Description

Classe responsavel por registrar um evento.

Definition at line 4 of file registrarEventoComponent.php.

3.12.2 Constructor & Destructor Documentation
3.12.2.1 _ construct ($codigo_zona, $codigo_arquivo, $codigo_acao, $codigo_funcionario, $conexao)

Construtor da classe registrarEventoComponent

Parameters

$codigo_zona | codigo da zona que sofreu o evento

$codigo_arquivo | codigo do arquivo que foi criado, pode ser null

$codigo_acao | codigo da agao realizada

$codigo - | codigo do funcionario que disparou o evento
funcionario

$conexao | conexdo com o banco de dados

Definition at line 19 of file registrarEventoComponent.php.

3.12.3 Member Function Documentation
31231 run()

Fungao responsavel por cadastra o evento

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

3.13 statusModel Class Reference

Definition at line 28 of file registrarEventoComponent.php.

The documentation for this class was generated from the following file:

» C:/xampp/htdocs/sistema_de_seguranca/app/components/funcionario/registrarEventoComponent.php

3.13 statusModel Class Reference

Inheritance diagram for statusModel:

Model

statusModel

Public Member Functions
« validar ()
* toArray ()

Data Fields
+ $_tabela = "status"

* $_codigo
« $_descricao

Additional Inherited Members

3.13.1 Detailed Description

Classe responsavel pelo acesso a tabela "status" do banco de dados

Definition at line 5 of file statusModel.php.

3.13.2 Member Function Documentation

3.13.2.1 toArray()

Fungéo que transforma as variaveis de um objeto tipo Model num array.
Definition at line 18 of file statusModel.php.

3.13.2.2 validar ()

Funcéo que verifica se os dados estédo prontos para ser inseridos no banco de dados
Definition at line 12 of file statusModel.php.

The documentation for this class was generated from the following file:

» C:/xampp/htdocs/sistema_de_seguranca/app/models/funcionario/statusModel.php

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

20

Data Structure Documentation

3.14 System Class Reference

Public Member Functions

» __construct ()
* run ()

3.14.1 Detailed Description

Classe responsavel pela execugdo do sistema.

Definition at line 4 of file System.php.

3.14.2 Constructor & Destructor Documentation
3.1421 _ construct()

Construtor da classe System

Definition at line 13 of file System.php.
3.14.3 Member Function Documentation

31431 run()

Fungéo que executa a ag¢éo do controlador
Definition at line 115 of file System.php.

The documentation for this class was generated from the following file:

» C:/xampp/htdocs/sistema_de_seguranca/system/System.php

3.15 verificarLoginComponent Class Reference

Inheritance diagram for verificarLoginComponent:

’ Component ‘

T

’ verificarLoginComponent ‘

Public Member Functions

» _ construct ($usuario, $senha)
e run ()

Additional Inherited Members

3.15.1 Detailed Description

Classe responsavel por verificar as informagoes de login.

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

3.16 zonaModel Class Reference

21

Definition at line 4 of file verificarLoginComponent.php.

3.15.2 Constructor & Destructor Documentation
3.15.21 _ construct ($usuario, $senha)

Construtor da classe verificarLoginComponent

Parameters

$usuario | usuario cadastrado

$senha | senha cadastrada

Definition at line 13 of file verificarLoginComponent.php.

3.15.3 Member Function Documentation
3.153.1 run()

Fungéo que verifica a validade dos dados de login
Definition at line 19 of file verificarLoginComponent.php.

The documentation for this class was generated from the following file:

» C:/xampp/htdocs/sistema_de_seguranca/app/components/funcionario/verificarLoginComponent.php

3.16 zonaModel Class Reference

Inheritance diagram for zonaModel:

Model

zonaModel

Public Member Functions
« validar ()
 toArray ()

Data Fields

+ $ tabela ="zona"
* $_codigo

* $_codigo_status
« $ nome

Additional Inherited Members

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

22 Data Structure Documentation

3.16.1 Detailed Description

Classe responsavel pelo acesso a tabela "zona" do banco de dados
Definition at line 5 of file zonaModel.php.

3.16.2 Member Function Documentation

3.16.2.1 toArray()

Fungéo que transforma as variaveis de um objeto tipo Model num array.

Definition at line 19 of file zonaModel.php.

3.16.2.2 validar ()

Funcéo que verifica se os dados estdo prontos para ser inseridos no banco de dados
Definition at line 13 of file zonaModel.php.

The documentation for this class was generated from the following file:

» C:/xampp/htdocs/sistema_de_seguranca/app/models/funcionario/zonaModel.php

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

Index

__construct
carregarZonasComponent, 7
downloadComponent, 10
enviarlimagemComponent, 11
funcionarioController, 12
Model, 17
registrarEventoComponent, 18
System, 20
verificarLoginComponent, 21

acaoModel, 5
toArray, 5
validar, 5
actionAcaolnvalida
funcionarioController, 12
actionAcessoNegado
funcionarioController, 12
actionAtualizarStatusZonaPHP
funcionarioController, 13
actionControladorinvalido
funcionarioController, 13
actionDownload
funcionarioController, 13
actionListarLogEventos
funcionarioController, 13
actionLogin
funcionarioController, 13
actionLogout
funcionarioController, 13
actionRenomearZona
funcionarioController, 13
actionServerRequest
funcionarioController, 13
actionSubmitLogin
funcionarioController, 13
actionVisualizarSistema
funcionarioController, 14
actionVisualizarZona
funcionarioController, 14
arquivo_videoModel, 6
toArray, 6
validar, 6

carregarZonasComponent, 7
__construct, 7
run, 7
Component, 8
component, 8
model, 8
component

Component, 8
Controller, 9

Controller, 8
component, 9
model, 9
redirect, 9
view, 9

delete
Model, 17
downloadComponent, 10
__construct, 10
run, 10

enviarimagemComponent, 11
__construct, 11
run, 11

funcionarioController, 12
__construct, 12
actionAcaolnvalida, 12
actionAcessoNegado, 12

actionAtualizarStatusZonaPHP, 13

actionControladorinvalido, 13
actionDownload, 13
actionListarLogEventos, 13
actionLogin, 13
actionLogout, 13
actionRenomearZona, 13
actionServerRequest, 13
actionSubmitLogin, 13
actionVisualizarSistema, 14
actionVisualizarZona, 14
funcionarioModel, 14
toArray, 15
validar, 15

insert
Model, 17

log_eventosModel, 15
toArray, 16
validar, 16

Model, 16
__construct, 17
delete, 17
insert, 17
read, 17
sql, 17
update, 17

24

INDEX

model
Component, 8
Controller, 9

read
Model, 17

redirect
Controller, 9

registrarEventoComponent, 18
__construct, 18
run, 18

run
carregarZonasComponent, 7
downloadComponent, 10
enviarimagemComponent, 11
registrarEventoComponent, 18
System, 20
verificarLoginComponent, 21

sql
Model, 17
statusModel, 19
toArray, 19
validar, 19
System, 20
__construct, 20
run, 20
toArray

acaoModel, 5
arquivo_videoModel, 6
funcionarioModel, 15
log_eventosModel, 16
statusModel, 19
zonaModel, 22

update
Model, 17

validar
acaoModel, 5
arquivo_videoModel, 6
funcionarioModel, 15
log_eventosModel, 16
statusModel, 19
zonaModel, 22

verificarLoginComponent, 20
__construct, 21
run, 21

view
Controller, 9

zonaModel, 21
toArray, 22
validar, 22

Generated on Thu Nov 7 2013 12:28:21 for My Project by Doxygen

127

APENDICE G - Cédigo fonte de geracio do

Banco de Dados

— phpMyAdmin SQL Dump
— wversion 3.5.2.2
— http ://www. phpmyadmin . net

— Servidor: 127.0.0.1

— Tempo de Geracao:

— Versao do Servidor: 5.5.27
— Versao do PHP: 5.4.7

SET SQL MODE="NO AUTO VALUE ON ZFRO";
SET time zone = "+00:00";

/140101
/140101
/140101
/140101

— Banco

SET @OLD CHARACTER SET CLIENT=@@CHARACTER SET CLIENT x/;
SET @OLD CHARACTER SET RESULTS=@A@CHARACTER SET RESULTS x/;
SET @OLD COLLATION CONNECTION=@@COLLATION CONNECTION x /"
SET NAMES utfS =/

4

de Dados: ‘sistema__segquranca

— FEstrutura da tabela ‘acao

4

CREATE TABLE IF NOT EXISTS ‘acao‘ (
‘codigo ¢ int (11) NOT NULL AUTO_ INCREMENT,
“descricao ¢ varchar (45) NOT NULL,
PRIMARY KEY (‘codigo ‘)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=6 ;

128 APENDICE G. Cédigo fonte de geragio do Banco de Dados

— FEztraindo dados da tabela ‘acao’

INSERT INTO ‘acao‘ (‘codigo ‘, ‘descricao ‘) VALUES
1, "Marcar como,seguro’),

2, "Marcar como alerta’),
3, 'Marcar como, invasao’),
4, ’Renomear Zona'),
)

, 'Inserir Zona’);

¢

— FEstrutura da tabela ‘arquivo__video

CREATE TABLE IF NOT EXISTS ‘arquivo_video ‘ (
‘codigo ¢ varchar (24) NOT NULL,
‘nome‘ varchar (45) NOT NULL,
‘data ¢ datetime NOT NULL,
‘codigo_zona‘ int(11) NOT NULL,
PRIMARY KEY (‘codigo ‘),
KEY ‘indice_codigo_zona ‘ (‘codigo_zona ‘)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 ;

(

— FEstrutura da tabela ‘funcionario

CREATE TABLE IF NOT EXISTS ‘funcionario ¢ (
‘codigo ¢ int (11) NOT NULL AUTO_ INCREMENT,
‘senha ¢ varchar (45) NOT NULL,
‘nome‘ varchar (45) NOT NULL,
PRIMARY KEY (‘codigo ‘)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO INCREMENT=2 ;

129

¢

— FExtraindo dados da tabela ‘funcionario

INSERT INTO ‘funcionario ‘ (‘codigo ‘, ‘senha‘, ‘nome‘) VALUES

(111000111, ’'naopodelogarcomoserver’, ’Server’)

(1, ’21232f297ab7ab5a743894a0e4a801fc3’, ’admin’);

— FEstrutura da tabela ‘log eventos ¢

CREATE TABLE IF NOT EXISTS ‘log eventos ‘ (
‘codigo ‘ int(11) NOT NULL AUTO_INCREMENT,
‘codigo_zona ‘ int (11) NOT NULL,

‘codigo funcionario * int(11) NOT NULL,
‘codigo_arquivo ¢ varchar(24) DEFAULT NULL,
‘codigo_acao‘ int (11) NOT NULL,

PRIMARY KEY (‘codigo ‘),
KEY ‘indice_ codigo acao

4

(‘codigo_acao ‘),

KEY ‘indice codigo_ zona‘ (‘codigo_zona ‘),

4

KEY ‘indice_codigo_funcionario

4

KEY ‘indice codigo arquivo‘ (‘codigo arquivo ‘)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_ INCREMENT=1

(‘codigo_funcionario ‘),

— FEstrutura da tabela ‘status ¢

CREATE TABLE [F NOT EXISTS ‘status ‘ (
‘codigo ¢ int(11) NOT NULL AUTO INCREMENT,
“descricao ¢ varchar (45) NOT NULL,
PRIMARY KEY (‘codigo ‘)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=4 ;

130 APENDICE G. Cédigo fonte de geragio do Banco de Dados

¢

— FEzxtraindo dados da tabela ‘status

INSERT INTO ‘status ‘ (‘codigo‘, ‘descricao ‘) VALUES

(1, ’seguro’),
(2, ’alerta’),
(3, ’invasao’);

— FEstrutura da tabela ‘zona

CREATE TABLE IF NOT EXISTS ‘zona‘ (
‘codigo ¢ int (11) NOT NULL AUTO INCREMENT,
‘codigo_status ‘ int(11) NOT NULL,
‘nome‘ varchar (45) NOT NULL,
PRIMARY KEY (‘codigo ‘),
KEY ‘indice_codigo_status‘ (‘codigo_status ‘)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO INCREMENT=I1 ;

— Restricoes para as tabelas dumpadas

¢

— Restricoes para a tabela ‘arquivo_video
ALTER TABIE ‘arquivo_video *
ADD CONSTRAINT ‘arquivo_ video_ ibfk 1°‘ FOREIGN KEY (‘codigo_zona ‘) REFERENCI

¢

— Restricoes para a tabela ‘log _eventos

ALTER TABIE ‘log eventos ®
ADD CONSTRAINT ‘log_eventos_ibfk 1°‘ FOREIGN KEY (‘codigo_zona ‘) REFERENCES

131

ADD CONSTRAINT ‘log_eventos_ibfk 4 ‘ FOREIGN KEY (‘codigo_acao ‘) REFERE!
ADD CONSTRAINT ‘log_eventos_ibfk 5 ‘ FOREIGN KEY (‘codigo_funcionario ‘)
ADD CONSTRAINT ‘log eventos_ibfk 6 ‘ FOREIGN KEY (‘codigo arquivo ‘) REFE

— Restricoes para a tabela ‘zona®

ALTER TABLE ‘zona
ADD CONSTRAINT ‘zona_ ibfk _1°¢ FOREIGN KEY (‘codigo_status ‘) REFERENCES °

/x140101 SET CHARACTER SET CLIENT=QOLD CHARACTER_SET CLIENT x/;
/x140101 SET CHARACTER SET RESULTS=@QOLD CHARACTER_SET RESULTS x/;
/x140101 SET COLLATION CONNECTION=QOLD COLLATION CONNECTION x /'

	Folha de rosto
	Resumo
	Abstract
	Lista de ilustrações
	Lista de abreviaturas e siglas
	Sumário
	Introdução
	Estado da Arte
	Requisitos de projeto
	Metodologia de projeto
	Prototipagem rápida e virtual
	Projeto exploratório

	Modelo de referência

	Design do sistema
	Hardware
	Raspberry Pi

	Software
	ROS

	Aquisição de imagens
	Resolução da imagem
	Cadência

	Sistema de segurança
	As zonas do sistema
	Os estados do sistema
	Os atributos do sistema

	Projeto
	Estrutura do sistema
	Desempenho esperado

	Resultados
	Implementação do sistema completo
	Teste 1
	Teste 2

	Discussão dos resultados
	Raspberry Pi
	Funcionamento da arquitetura
	Algoritmo de detecção de invasão
	Arquitetura Mutli-agente
	Flexibilidade
	Agentes leves
	Controle distribuído
	Segurança da rede
	Velocidade de transmissão de dados
	PHP

	Conclusão
	Trabalhos futuros
	Estrutura multi-agente
	Funcionalidades do sistema

	Referências
	Apêndices
	Diagramas do sistema ROS
	Casos de uso
	Especificação de casos de uso
	Diagrama de casos de uso
	Identificação dos atores
	Identificação dos casos de uso
	Detalhamento dos casos de uso
	UC-01 Captar imagem
	UC-02 Publicar imagem
	UC-03 Subscrever imagem
	UC-04 Analisar imagem
	UC-05 Publicar status
	UC-06 Subscrever status
	UC-07 Receber status PHP
	UC-08 Atualizar status
	UC-09 Salvar imagem
	UC-10 Abrir imagem
	UC-11 Transmitir imagem

	Diagrama de sequência

	Diagramas do sistema PHP
	Casos de uso
	Especificação de casos de uso
	Diagrama de casos de uso
	Identificação dos atores
	Identificação dos casos de uso
	Detalhamento dos casos de uso
	UC-01 Fazer Login
	UC-02 Fazer Logout
	UC-03 Renomear Zona
	UC-04 Visualizar Zona
	UC-05 Listar Log de Eventos
	UC-06 Fazer Download
	UC-07 Visualizar Sistema
	UC-08 Atualizar Status da Zona PHP
	UC-09 Enviar Imagem
	UC-10 Verificar dados de Login
	UC-11 Registrar Evento
	UC-12 Carregar Zonas

	Diagramas de sequência
	Diagrama de classes
	Diagrama entidade relação

	Descrição do sistema PHP
	Framework
	Models
	Views
	Controllers
	Components
	Server
	carregarZonas($params)
	enviarImagem($params)
	registrarEvento($codigo_zona, $codigo_arquivo, $codigo_acao, , $codigo_funcionario, $conexao)
	verificarLogin($usuario, $senha)

	Algoritmos para detecção de invasão
	Comparação de frames subsequentes
	Comparação com o primeiro frame
	Contornos de imagens

	Documentação projeto ROS
	Documentação projeto PHP
	Código fonte de geração do Banco de Dados

